Abstract

Optical cavities are of central importance in numerous areas of physics, including precision measurement, cavity optomechanics and cavity quantum electrodynamics. The miniaturisation and scaling to large numbers of sites is of interest for many of these applications, in particular for quantum computation and simulation. Here we present the first scaled microcavity system which enables the creation of large numbers of highly uniform, tunable light-matter interfaces using ions, neutral atoms or solid-state qubits. The microcavities are created by means of silicon micro-fabrication, are coupled directly to optical fibres and can be independently tuned to the chosen frequency, paving the way for arbitrarily large networks of optical microcavities.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
    [Crossref] [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
    [Crossref]
  3. J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
    [Crossref] [PubMed]
  4. M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
    [Crossref]
  5. A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
    [Crossref] [PubMed]
  6. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  7. P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009).
    [Crossref] [PubMed]
  8. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
    [Crossref] [PubMed]
  9. J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
    [Crossref]
  10. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref]
  11. H. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  12. S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
    [Crossref] [PubMed]
  13. M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
    [Crossref]
  14. S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
    [Crossref]
  15. G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
    [Crossref]
  16. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
    [Crossref]
  17. G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
    [Crossref]
  18. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. lett. 35(21), 3556–3558 (2010).
    [Crossref] [PubMed]
  19. M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
    [Crossref] [PubMed]
  20. J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
    [Crossref] [PubMed]
  21. A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
    [Crossref]
  22. K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
    [Crossref]
  23. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991).
    [Crossref]
  24. J. Reichel and V. Vuletic, eds. Atom Chips (John Wiley, 2010).
  25. S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
    [Crossref]
  26. D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).
  27. J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
    [Crossref]
  28. F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
    [Crossref]
  29. F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
    [Crossref]
  30. J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
    [Crossref] [PubMed]
  31. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
    [Crossref]
  32. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
    [Crossref] [PubMed]
  33. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
    [Crossref] [PubMed]
  34. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
    [Crossref] [PubMed]
  35. B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
    [Crossref] [PubMed]
  36. H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
    [Crossref] [PubMed]
  37. W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
    [Crossref] [PubMed]
  38. T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
    [Crossref] [PubMed]
  39. F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
    [Crossref] [PubMed]
  40. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
    [Crossref] [PubMed]
  41. J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
    [Crossref]
  42. H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
    [Crossref]
  43. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
    [Crossref]
  44. K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).
  45. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
    [Crossref]
  46. C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
    [Crossref]
  47. Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
    [Crossref]
  48. A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
    [Crossref]
  49. M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
    [Crossref]
  50. F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).
  51. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

2014 (1)

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

2013 (11)

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

2012 (5)

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

2011 (6)

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
[Crossref]

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
[Crossref]

2010 (7)

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. lett. 35(21), 3556–3558 (2010).
[Crossref] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

2009 (6)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009).
[Crossref] [PubMed]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
[Crossref]

2008 (3)

H. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
[Crossref]

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

2007 (1)

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

2006 (2)

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

2005 (2)

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

2004 (1)

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Abarbanel, C.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Acosta, V.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Adesso, G.

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

Aharonovich, I.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Alt, W.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Ashmore, J.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Astakhov, G. V.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Atatüre, M.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Awschalom, D. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Balasubramanian, G.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Baranov, P. G.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Barclay, P. E.

Bassett, L. C.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Bautista-Salvador, A.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009).
[Crossref] [PubMed]

Becher, C.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Benito, F. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Bennett, S. D.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Bernien, H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Besga, B.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

Biedermann, G. W.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Blain, M. G.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Blatt, R.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Blok, M. S.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Bochmann, J.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Bollinger, J.J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Brandao, F. G.

M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
[Crossref]

Brandstätter, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Britzger, M.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Brownnutt, M.

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Brückner, F.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Buckley, B. B.

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Buczak, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Budker, D.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Burmeister, O.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Casabone, B.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Cervantes, F. G.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).

Chang, H. C.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Childress, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Chin, Y. S.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Chipaux, M.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Chisholm, N.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Chuang, I.L.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Cirac, J. I.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Clark, R.J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Clausnitzer, T.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Cotter, J. P.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Crespi, A.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Dakic, B.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Danzmann, K.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Darquié, B.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

De Nicola, F.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Debuisschert, T.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Delteil, A.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Deutsch, C.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Devitt, S. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Dolan, P. R.

Domhan, M.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Dotsenko, I.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Dubois, G.

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

Dumeige, Y.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Dutier, G.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

Dutt, M. V. G.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Dyakonov, V.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Epstein, R.J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Eriksson, S.

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Estéve, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

Estève, J.

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

Everitt, M. S.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Fallahi, P.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Fazio, R.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Figueroa, E.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Folman, R.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Fortier, K. M.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Frahm, R.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Friedrich, D.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Fu, K. M.

Fuchs, F.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Fuchs, G. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

Gaebel, T.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Gao, W. B.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Gehr, R.

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

Giovannetti, V.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
[Crossref]

Goldwin, J.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

Grazioso, F.

Greentree, A. D.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
[Crossref]

C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
[Crossref]

Gsell, S.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Hahn, C.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Hänsch, T. W.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Hänsel, W.

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Hansen, O.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
[Crossref]

Hanson, R.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Harlander, M.

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Harrison, J. P.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Hartmann, M. J.

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
[Crossref]

Heilmann, R.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Hemmer, P. R.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Hensen, B.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Hepp, C.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Hinds, E. A.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Hollenberg, L. C.

C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
[Crossref]

Hu, C. Y.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Hughes, G. M.

Hunger, D.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Illuminati, F.

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

Imamoglu, A.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jacques, V.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Jamieson, D. N.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Jarecki, R. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Jarmola, A.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Jensen, K.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Jiang, L.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Kampschulte, T.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Kaupp, H.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Kehayias, P.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Kenner, J.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

Khudaverdyan, M.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Kimble, H.

H. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Kley, E.-B.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Kolesov, R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Koolstra, G.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Kraft, M.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Kucsko, G.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Kumanchik, L.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).

Kuzmich, A.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Labaziewicz, J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laliotis, A.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Larsen, K. P.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
[Crossref]

Latta, C.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Leibfried, D.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Leibrandt, D.R.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Lenhard, K.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Lepert, G.

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

Lewis, G.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
[Crossref]

Low, Y.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Loyd, T. K.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Lukin, M. D.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
[Crossref]

Markham, M.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Marseglia, L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Mataloni, P.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Maurer, P. C.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Meschede, D.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Miguel-Sanchez, J.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

Miguel-Sánchez, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

Miller, R.

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Mokhov, E. N.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Monz, T.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Mücke, M.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Müller, T.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Munro, W. J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Nakakura, C. Y.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Nemoto, K.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Neu, E.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Neumann, P.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Neuzner, A.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Nobauer, T.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Nölleke, C.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Nolte, S.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Northup, T. E.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Osellame, R.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Ospelkaus, C.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Pai, C.-S.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Painter, O.

Pastawski, F.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Paternostro, M.

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

Patton, B. R.

Pfaff, W.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Pingault, B.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Plenio, M. B.

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
[Crossref]

Popa, I.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Poschinger, U.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

Pratt, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).

Prawer, S.

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Rabeau, J. R.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Ramponi, R.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Rarity, J. G.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Ratnapala, A.

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

Rauschenbeutel, A.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Ravnkilde, J. T.

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
[Crossref]

Reichart, P.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Reichel, J.

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

Reick, S.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Reinhard, A.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

Reiserer, A.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Rempe, G.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Ritter, S.

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Robledo, L.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Roch, J.-F.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Saleh, B. E.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991).
[Crossref]

Sansoni, L.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17(10), 8081–8097 (2009).
[Crossref] [PubMed]

Schenkel, T.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

Schindler, P.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Schmidt, P. O.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Schmidt-Kaler, F.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

Schmiedmayer, J.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Schnabel, R.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Schörner, S.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Schreck, M.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Schulz, S.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

Schwindt, P. D. D.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Sciarrino, F.

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

Singer, K.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

Slusher, R.E.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Smith, J. M.

Soltamov, V. A.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Sörensen, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Splatt, F.

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Steinmueller-Nethl, D.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Stephens, A. M.

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Sterk, J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Sternschulte, H.

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

Stick, D.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Stick, D. L.

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

Stute, A.

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

Su, C. H.

C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
[Crossref]

Szameit, A.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Tamanyan, G.

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Taminiau, T. H.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

Taylor, J.

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).

Teich, M. C.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991).
[Crossref]

Tillmann, M.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Togan, E.

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Toyli, D. M.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

Treussart, F.

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Trifonov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Trupke, M.

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

Tünnermann, A.

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Twitchen, D.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Twitchen, D. J.

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Uphoff, M.

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Volz, J.

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

Volz, T.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

Vth, S.

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Walther, P.

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Weis, C. D.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

Welzel, J.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Wesenberg, J.H.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Widera, A.

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

Wineland, D.J.

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Wineman-Fisher, V.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Wrachtrup, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Wunderlich, C.

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Yao, N. Y.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

Young, A.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Zähringer, F.

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

Zibrov, A. S.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

Zippilli, S.

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

Appl. Phys. Lett. (3)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small volume,” Appl. Phys. Lett. 87(21), 211106 (2005).
[Crossref]

G. W. Biedermann, F. M. Benito, K. M. Fortier, D. L. Stick, T. K. Loyd, P. D. D. Schwindt, C. Y. Nakakura, R. L. Jarecki, and M. G. Blain, “Ultrasmooth microfabricated mirrors for quantum information,” Appl. Phys. Lett. 97(18), 181110 (2010).
[Crossref]

J. R. Rabeau, P. Reichart, G. Tamanyan, D. N. Jamieson, S. Prawer, F. Jelezko, T. Gaebel, I. Popa, M. Domhan, and J. Wrachtrup, “Implantation of labelled single nitrogen vacancy centers in diamond using 15N,” Appl. Phys. Lett. 88(2), 023113 (2006).
[Crossref]

Eur. Phys. J. D (1)

J. Welzel, A. Bautista-Salvador, C. Abarbanel, V. Wineman-Fisher, C. Wunderlich, R. Folman, and F. Schmidt-Kaler, “Designing spin-spin interactions with one and two dimensional ion crystals in planar micro traps,” Eur. Phys. J. D 65(1–2), 285–297 (2011).
[Crossref]

Fortschr. Phys. (1)

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, “Optimization of segmented linear Paul traps and transport of stored particles,” Fortschr. Phys. 54(8–10), 648–665 (2006).
[Crossref]

J. Micromech. Microeng. (2)

A. Laliotis, M. Trupke, J. P. Cotter, G. Lewis, M. Kraft, and E. A. Hinds, “ICP polishing of silicon for high-quality optical resonators on a chip,” J. Micromech. Microeng. 22(12), 125011 (2012).
[Crossref]

K. P. Larsen, J. T. Ravnkilde, and O. Hansen, “Investigations of the isotropic etch of an ICP source for silicon microlens mold fabrication,” J. Micromech. Microeng. 15(4), 873 (2005).
[Crossref]

Laser Photon. Rev. (1)

M. J. Hartmann, F. G. Brandao, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2(6), 527–556 (2008).
[Crossref]

Nano Lett. (1)

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172 (2010).
[Crossref] [PubMed]

Nat. Commun. (3)

W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin, J. Miguel-Sanchez, and A. Imamoğlu, “Quantum teleportation from a propagating photon to a solid-state spin qubit,” Nat. Commun. 4, 2744 (2013).
[Crossref] [PubMed]

T. Müller, C. Hepp, B. Pingault, E. Neu, S. Gsell, M. Schreck, H. Sternschulte, D. Steinmueller-Nethl, C. Becher, and M. Atatüre, “Optical signatures of silicon-vacancy spins in diamond,” Nat. Commun. 5, 3328 (2014).
[Crossref] [PubMed]

J. Goldwin, M. Trupke, J. Kenner, A. Ratnapala, and E. A. Hinds, “Fast cavity-enhanced atom detection with low noise and high fidelity,” Nat. Commun. 2, 418 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009).
[Crossref] [PubMed]

Nat. Photon. (4)

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photon. 5(4), 222–229 (2011).
[Crossref]

I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photon. 5(7), 397–405 (2011).
[Crossref]

A. Crespi, R. Osellame, R. Ramponi, V. Giovannetti, R. Fazio, L. Sansoni, F. De Nicola, F. Sciarrino, and P. Mataloni, “Anderson localization of entangled photons in an integrated quantum walk,” Nat. Photon. 7(4), 322– 328 (2013).
[Crossref]

M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and P. Walther, “Experimental boson sampling,” Nat. Photon. 7(7), 540–544 (2013).
[Crossref]

Nature (8)

J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, “Measurement of the internal state of a single atom without energy exchange,” Nature 475(7355), 210–213 (2011).
[Crossref] [PubMed]

H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497(7447), 86–90 (2013).
[Crossref] [PubMed]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, and R. Blatt, “Tunable ion-photon entanglement in an optical cavity,” Nature 485(7399), 482–485 (2012).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

H. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, “An elementary quantum network of single atoms in optical cavities,” Nature 484(7393), 195–200 (2012).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sörensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010).
[Crossref] [PubMed]

New J. Phys. (5)

F. Splatt, M. Harlander, M. Brownnutt, F. Zähringer, R. Blatt, and W. Hänsel, “Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap,” New J. Phys. 11(10), 103008 (2009).
[Crossref]

G. Lepert, M. Trupke, M. J. Hartmann, M. B. Plenio, and E. A. Hinds, “Arrays of waveguide-coupled optical cavities that interact strongly with atoms,” New J. Phys. 13(11), 113002 (2011).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoglu, B. Besga, J. Reichel, and J. Estéve, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Pérot cavity,” New J. Phys. 15(4), 045002 (2013).
[Crossref]

M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, S. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10(7), 073023 (2008).
[Crossref]

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. O’Brien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11(1), 013007 (2009).
[Crossref]

Opt. Express (1)

Opt. lett. (1)

Phys. Rev, Lett. (1)

F. Brückner, D. Friedrich, T. Clausnitzer, M. Britzger, O. Burmeister, K. Danzmann, E.-B. Kley, A. Tünnermann, and R. Schnabel, “Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal,” Phys. Rev, Lett. 104(16), 163903 (2010).
[Crossref]

Phys. Rev. A (3)

M. Mücke, J. Bochmann, C. Hahn, A. Neuzner, C. Nölleke, A. Reiserer, G. Rempe, and S. Ritter, “Efficient generation of single photons from an atom-cavity system,” Phys. Rev. A 87, 063805 (2013).
[Crossref]

C. H. Su, A. D. Greentree, and L. C. Hollenberg, “High-performance diamond-based single-photon sources for quantum communication,” Phys. Rev. A 80(5), 052308 (2009).
[Crossref]

H. Kaupp, C. Deutsch, H. C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for NV centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Phys. Rev. B (1)

Y. Dumeige, M. Chipaux, V. Jacques, F. Treussart, J.-F. Roch, T. Debuisschert, V. Acosta, A. Jarmola, K. Jensen, P. Kehayias, and D. Budker, “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Phys. Rev. B 87(15), 155202 (2013).
[Crossref]

Phys. Rev. Lett. (4)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

M. Trupke, J. Goldwin, B. Darquié, G. Dutier, S. Eriksson, J. Ashmore, and E. A. Hinds, “Atom detection and photon production in a scalable, open, optical microcavity,” Phys. Rev. Lett. 99(6), 063601 (2007).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a single NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

S. Zippilli, M. Paternostro, G. Adesso, and F. Illuminati, “Entanglement replication in driven dissipative many-body systems,” Phys. Rev. Lett. 110(4), 040503 (2013).
[Crossref]

Quantum Inf. Comput. (1)

D.R. Leibrandt, J. Labaziewicz, R.J. Clark, I.L. Chuang, R.J. Epstein, C. Ospelkaus, J.H. Wesenberg, J.J. Bollinger, D. Leibfried, D.J. Wineland, D. Stick, J. Sterk, C. Monroe, C.-S. Pai, Y. Low, R. Frahm, and R.E. Slusher, “Demonstration of a scalable, multiplexed ion trap for quantum information processing,” Quantum Inf. Comput. 9(11), 901–919 (2009).

Sci. Rep. (1)

F. Fuchs, V. A. Soltamov, S. Vth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, “Silicon carbide light-emitting diode as a prospective room temperature source for single photons,” Sci. Rep. 3, 1637 (2013).
[Crossref] [PubMed]

Science (3)

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336(6086), 1283–1286 (2012).
[Crossref] [PubMed]

B. B. Buckley, G. D. Fuchs, L. C. Bassett, and D. D. Awschalom, “Spin-light coherence for single-spin measurement and control in diamond,” Science 330(6008), 1212–1215 (2010).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, R. Miller, J. R. Buck, A. Kuzmich, and H. J. Kimble, “Deterministic generation of single photons from one atom trapped in a cavity,” Science 303(5666), 1992–1994 (2004).
[Crossref] [PubMed]

Other (5)

B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Interscience, 1991).
[Crossref]

J. Reichel and V. Vuletic, eds. Atom Chips (John Wiley, 2010).

K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, K. Buczak, T. Nobauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, “Photonic architecture for scalable quantum information processing in NV-diamond,” arXiv:1309.4277 (2013), accepted for publication in Phys. Rev. X (2014).

F. G. Cervantes, L. Kumanchik, J. Pratt, and J. Taylor, “Self-calibrating ultra-low noise, wide-bandwidth optomechanical accelerometer,” arXiv:1303.1188 (2013).

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of a single microcavity with actuated micro-mirror (not to scale). b) Scanning electron microscope image of a section of the micro-mirror chip. The inset shows a detailed view of three cantilevers with micro-mirrors. c) Photograph of the assembled device. Inset: Artist’s impression of the assembled microcavity system. A row of single-mode fibres (blue), each set into a v-groove on a silicon chip (green), is aligned to the equally pitched row of micro-mirrors on cantilevers.

Fig. 2
Fig. 2

(a) Deflection characteristics of the cantilevers, measured using a white-light interferometer. The solid line shows the deflection as a function of voltage as expected from simulations. The points show the measured data from 12 cantilevers. The dashed line shows the gradient of the actuation voltage (logarithmic scale, right axis). e) Laser-Doppler vibrometer measurement of the mechanical frequency response of an electrostatically excited cantilever. Inset: Measured mechanical resonance frequencies for cantilever lengths of 225μm (green), 250μm (cyan), 275μm (green) and 300μm (red) and varying cantilever width.

Fig. 3
Fig. 3

Electrostatic tuning of the optical resonance frequency. a) Reflected power (blue) from an electrostatically tuned microcavity, displaying two resonances of the lowest-order transverse mode. The linear voltage ramp applied to the cantilever is also shown (grey). b) Optical resonances of a row of 12 simultaneously fibre-coupled cavities measured in reflection for a constant distance between the fibre block and the microcavity chip (see text). Each reflection trace is normalised and offset in increments of 0.1 vertical units.

Fig. 4
Fig. 4

Stability of operation. a) Step response of a locked cavity around the point of maximum gradient of the optical resonance. The locking setpoint (green) is increased in steps of 20 mV and is closely followed by the power reflected from the cavity (blue). The right scale shows the corresponding increase of the cavity length away from the centre of the resonance. The upper inset shows the reflected power as a function of applied voltage, and a red point marks the steepest point of the curve. The lower inset shows the power spectrum of the detector voltage recorder over one second. The red curve is a running average with a Gaussian window of width σ = 5 kHz. The mechanical resonance of the cantilever is visible as a small peak at 223 kHz. b) Stable operation of two adjacent cavities over one minute. The blue and red traces show the detector voltages for the two cavities, while the gray line (right scale) is the amplified PID output for one of the cavities.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϑ = 1 | r 1 a r 2 t 1 2 η F C 2 1 r 1 r 2 | 2 , η F C = ψ F * ψ C d x d y .

Metrics