Abstract

We investigate the influence of the wavelength, within the 1.3μm–1.63μm range, on the second-order optical nonlinearity in silicon waveguides strained by a silicon nitride (Si3N4) overlayer. The effective second-order optical susceptibility χxxy(2)¯ evolutions have been determined for 3 different waveguide widths 385 nm, 435 nm and 465 nm and it showed higher values for longer wavelengths and narrower waveguides. For wWG = 385 nm and λ = 1630 nm, we demonstrated χxxy(2)¯ as high as 336 ± 30 pm/V. An explanation based on the strain distribution within the waveguide and its overlap with optical mode is then given to justify the obtained results.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides

Bartos Chmielak, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Waldow, and Heinrich Kurz
Opt. Express 21(21) 25324-25332 (2013)

Pockels effect based fully integrated, strained silicon electro-optic modulator

Bartos Chmielak, Michael Waldow, Christopher Matheisen, Christian Ripperda, Jens Bolten, Thorsten Wahlbrink, Michael Nagel, Florian Merget, and Heinrich Kurz
Opt. Express 19(18) 17212-17219 (2011)

Enhancing Pockels effect in strained silicon waveguides

Irene Olivares, Jorge Parra, Antoine Brimont, and Pablo Sanchis
Opt. Express 27(19) 26882-26892 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
    [Crossref]
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
    [Crossref]
  3. G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
    [Crossref]
  4. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
    [Crossref] [PubMed]
  5. C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett. 35, 273–275 (2010).
    [Crossref] [PubMed]
  6. C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
    [Crossref]
  7. M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
    [Crossref]
  8. B. Chmielak, M. Waldow, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Nagel, F. Merget, and H. Kurz, “Pockels effect based fully integrated, strained silicon electro-optic modulator,” Opt. Express 19, 17212–17219 (2011).
    [Crossref] [PubMed]
  9. B. Chmielak, C. Matheisen, C. Ripperda, J. Bolten, T. Wahlbrink, M. Waldow, and H. Kurz, “Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides,” Opt. Express 21, 25324–25332 (2013).
    [Crossref] [PubMed]
  10. M. W. Puckett, J. S. T. Smalley, M. Abashin, A. Grieco, and Y. Fainman, “Tensor of the second-order nonlinear susceptibility in asymmetrically strained silicon waveguides: analysis and experimental validation,” Opt. Lett. 39, 1693–1696 (2014).
    [Crossref] [PubMed]
  11. F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
    [Crossref]
  12. A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
    [Crossref]
  13. A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), Chap. 31.
  14. M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
    [Crossref]
  15. S. V. Govorkov, V. I. Emel’yanov, N. I. Koroteev, G. I. Petrov, I. L. Shumay, V. V. Yakovlev, and R. V. Khokhlov, “Inhomogeneous deformation of silicon surface layers probed by second-harmonic generation in reflection,” J. Opt. Soc. Am. B 6, 1117–1124 (1989).
    [Crossref]
  16. M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
    [Crossref]
  17. G. Li and P. Yu, “Optical intensity modulators for digital and analog applications,” J. Lightwave Technol. 21, 2010–2030 (2003).
    [Crossref]

2014 (1)

2013 (1)

2012 (3)

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

2011 (1)

2010 (3)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett. 35, 273–275 (2010).
[Crossref] [PubMed]

2008 (1)

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

2004 (2)

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
[Crossref]

2003 (1)

2001 (1)

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

1989 (1)

Abashin, M.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Andreani, L.

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Bianco, F.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Bohley, C.

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett. 35, 273–275 (2010).
[Crossref] [PubMed]

Bolten, J.

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Borga, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Cazzanelli, M.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

Chmielak, B.

Cioccio, L. D.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Daleiden, J.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

Degoli, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Emel’yanov, V. I.

Enrichi, F.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Fainman, Y.

Falasconi, M.

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Fedeli, J. M.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Fedus, K.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Gardes, F.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Ghulinyan, M.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Govorkov, S. V.

Grieco, A.

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Hillmer, H.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

Irmer, S.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

Izdebski, M.

M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
[Crossref]

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Khokhlov, R. V.

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Koroteev, N. I.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Kucharczyk, W.

M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
[Crossref]

Kurz, H.

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

Li, G.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), Chap. 31.

Luppi, E.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Malvezzi, A.

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Mandorlo, F.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Marris-Morini, D.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Mashanovich, G.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Matheisen, C.

Merget, F.

Modotto, D.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Mulloni, V.

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Nagel, M.

Orobtchouk, R.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Ossicini, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Patrini, M.

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Pavesi, L.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Petrov, G. I.

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Pierobon, R.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

Prasai, D.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

Pucker, G.

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Puckett, M. W.

Raab, R. E.

M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
[Crossref]

Reed, G.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Ripperda, C.

Rojo-Romeo, P.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Schilling, J.

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

Schriever, C.

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett. 35, 273–275 (2010).
[Crossref] [PubMed]

Seassal, C.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Shumay, I. L.

Smalley, J. S. T.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), Chap. 31.

Tarraf, A.

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

Thomson, D.

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Véniard, V.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Vivien, L.

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

Wabnitz, S.

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Wahlbrink, T.

Waldow, M.

Wehrspohn, R. B.

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

C. Schriever, C. Bohley, and R. B. Wehrspohn, “Strain dependence of second-harmonic generation in silicon,” Opt. Lett. 35, 273–275 (2010).
[Crossref] [PubMed]

Yakovlev, V. V.

Yu, P.

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Adv. Optical Technol. (1)

J. M. Fedeli, L. D. Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a cmos wafer,” Adv. Optical Technol. 2008, 412518 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, “Stress investigation of PECVD dielectric layers for advanced optical MEMS,” J. Micromech. Microeng. 14, 317–323 (2004).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

M. Izdebski, W. Kucharczyk, and R. E. Raab, “On relationships between electro-optic coefficients for impermeability and nonlinear electric susceptibilities,” J. Opt. A: Pure Appl. Opt. 6, 421–424 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Materials (1)

C. Schriever, C. Bohley, J. Schilling, and R. B. Wehrspohn, “Strained silicon photonics,” Materials 5, 889–908 (2012).
[Crossref]

Nat. Mater. (1)

M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, and L. Pavesi, “Second-harmonic generation in silicon waveguides strained by silicon nitride,” Nat. Mater. 11, 148–154 (2012).
[Crossref]

Nat. Photon. (2)

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010).
[Crossref]

G. Reed, G. Mashanovich, F. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photon. 4, 518–526 (2010).
[Crossref]

Nature (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Semicond. Sci. Technol. (1)

F. Bianco, K. Fedus, F. Enrichi, R. Pierobon, M. Cazzanelli, M. Ghulinyan, G. Pucker, and L. Pavesi, “Two-dimensional micro-Raman mapping of stress and strain distributions in strained silicon waveguides,” Semicond. Sci. Technol. 27, 085009 (2012).
[Crossref]

Surf. Sci. (1)

M. Falasconi, L. Andreani, A. Malvezzi, M. Patrini, V. Mulloni, and L. Pavesi, “Bulk and surface contributions to second-order susceptibility in crystalline and porous silicon by second-harmonic generation,” Surf. Sci. 481, 105–112 (2001).
[Crossref]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory, 1st ed. (Chapman and Hall, 1983), Chap. 31.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 a) Cross section of one of the MZI arm with the respective electric field distribution generated by the electrodes; b) Corresponding SEM image; c) Computed mode |E| profiles of the fundamental TE mode for different waveguide ridge width; d) Schematic top view of the asymmetric MZI with a total arm difference length of ΔL = 50μm.
Fig. 2
Fig. 2 Two selected resonances (λr ∼ 1350 nm and λr ∼ 1590 nm) of the transmission spectrum of the 3.3mm-long MZI with 435nm-wide waveguide. a) and c) show the resonance shift occurring when ±30V was applied. Graphs b) and d) show the linear relationship of λr as a function of the applied voltage, characteristic of Pockels effect.
Fig. 3
Fig. 3 a) Effective index change Δneff of the TE- mode under 30V, b) effective second-order nonlinear susceptibility χ x x y ( 2 ) ¯, as a function of the wavelength for 1.3μm to 1.6μm wWG of 385 nm, 435 nm and 465 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = c ε 0 i j k W G χ i j k ( 2 ) E i E j F k d x d y ( E x H y * E y H x * ) d x d y
γ = c ε 0 W G E x 2 d x d y ( E x H y * E y H x * ) d x d y .

Metrics