Abstract

We theoretically investigate the fluorescence enhancement of a molecule placed in a variable (4 – 20 nm) gap of a plasmonic dimer, with different dye molecules as well as different nanoparticle geometries, using a fully vectorial three-dimensional finite-difference time-domain (3D FDTD) method. This work extends previous studies on molecular fluorescence in the vicinity of metal interfaces and single nanoparticles and shows how the radiative emission of a molecule can be further enhanced by engineering the geometry of a plasmonic structure. Through the use of rigorous 3D FDTD calculations, in conjunction with analytic guidance based on temporal coupled-mode (TCM) theory, we develop a design procedure for antennae assemblies that is useful both for general understanding of molecule-metal structure interaction and experimental efforts in plasmon-enhanced molecular spectroscopy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Spectral dependence of single molecule fluorescence enhancement

Palash Bharadwaj and Lukas Novotny
Opt. Express 15(21) 14266-14274 (2007)

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Vincenzo Giannini, José A. Sánchez-Gil, Otto L. Muskens, and Jaime Gómez Rivas
J. Opt. Soc. Am. B 26(8) 1569-1577 (2009)

Wavelength-dependent emission enhancement through the design of active plasmonic nanoantennas

Mélanie Ferrié, Nicola Pinna, Serge Ravaine, and Renaud A. L. Vallée
Opt. Express 19(18) 17697-17712 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
    [Crossref]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [Crossref]
  3. X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20, 29909–29922 (2012).
    [Crossref]
  4. B. B. Yousif and A. S. Samra, “Optical responses of plasmonic gold nanoantennas through numerical simulation,” J. Nanopart. Res. 15, 1–15 (2013).
    [Crossref]
  5. X. Meng, R. R. Grote, and R. M. Osgood, “Engineering 3d metal nanoantenna for fluorescence enhancement,” in “CLEO: Applications and Technology,” (Optical Society of America, 2013), pp. JTu4A–55.
  6. C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
    [Crossref]
  7. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-Vch, 2010).
  8. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
    [Crossref] [PubMed]
  9. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [Crossref] [PubMed]
  10. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
    [Crossref]
  11. D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
    [Crossref]
  12. M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
    [Crossref]
  13. H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
    [Crossref] [PubMed]
  14. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
    [Crossref] [PubMed]
  15. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
    [Crossref]
  16. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall Englewood Cliffs, 1984).
  17. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
    [Crossref] [PubMed]
  18. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
    [Crossref] [PubMed]
  19. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
    [Crossref] [PubMed]
  20. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
    [Crossref]
  21. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
    [Crossref]
  22. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
    [Crossref] [PubMed]
  23. V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
    [Crossref] [PubMed]
  24. M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers [invited],” Opt. Mater. Express 1, 46–56 (2011).
    [Crossref]
  25. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
    [Crossref]
  26. P. Bharadwaj, L. Novotny, and et al., “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
    [Crossref] [PubMed]
  27. E. N. Economou, Green’s Functions in Quantum Physics, vol. 3 (Springer, 1984).
  28. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  29. G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in “Surface plasmon nanophotonics,” (Springer, 2007), pp. 169–182.
    [Crossref]
  30. C. Dyes, “Biotium Inc.,” http://www.biotium.com/ (2013).
  31. J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
    [Crossref]
  32. J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
    [Crossref]
  33. J. D. Jackson and R. F. Fox, “Classical electrodynamics,” Am. J. Phys. 67, 841 (1999).
    [Crossref]
  34. J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
    [Crossref]
  35. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
    [Crossref]
  36. B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
    [Crossref]
  37. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  38. D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
    [Crossref] [PubMed]
  39. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley.com, 2008).
  40. P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
    [Crossref]
  41. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
    [Crossref] [PubMed]
  42. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
    [Crossref]

2014 (1)

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
[Crossref]

2013 (2)

B. B. Yousif and A. S. Samra, “Optical responses of plasmonic gold nanoantennas through numerical simulation,” J. Nanopart. Res. 15, 1–15 (2013).
[Crossref]

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

2012 (2)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

X. Jiao and S. Blair, “Optical antenna design for fluorescence enhancement in the ultraviolet,” Opt. Express 20, 29909–29922 (2012).
[Crossref]

2011 (3)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers [invited],” Opt. Mater. Express 1, 46–56 (2011).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

2010 (3)

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

2009 (8)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]

2008 (6)

J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[Crossref]

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
[Crossref]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref] [PubMed]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

2007 (1)

2006 (3)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[Crossref] [PubMed]

1999 (2)

J. D. Jackson and R. F. Fox, “Classical electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

1998 (2)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
[Crossref]

1981 (1)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

Ameloot, M.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

Aubry, A.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Azad, A. K.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Bautista, G.

Bharadwaj, P.

Blair, S.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley.com, 2008).

Boreman, G. D.

Brandl, D.

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chen, H.-T.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Chen, X.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Chon, J. W.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
[Crossref]

Dadap, J.

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

Dal Negro, L.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
[Crossref]

De Clercq, B.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Decker, M.

Deutsch, B.

Djurišic, A. B.

Economou, E. N.

E. N. Economou, Green’s Functions in Quantum Physics, vol. 3 (Springer, 1984).

Eisenthal, K.

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

Elazar, J. M.

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in “Surface plasmon nanophotonics,” (Springer, 2007), pp. 169–182.
[Crossref]

Forestiere, C.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
[Crossref]

Fox, R. F.

J. D. Jackson and R. F. Fox, “Classical electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

Gang, O.

H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
[Crossref] [PubMed]

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

Gersten, J.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

Gillijns, W.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Grote, R. R.

X. Meng, R. R. Grote, and R. M. Osgood, “Engineering 3d metal nanoantenna for fluorescence enhancement,” in “CLEO: Applications and Technology,” (Optical Society of America, 2013), pp. JTu4A–55.

Gu, M.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
[Crossref]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Halas, N.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

Halas, N. J.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Handin, A.

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
[Crossref]

Haus, H. A.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall Englewood Cliffs, 1984).

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
[Crossref]

Heinz, T.

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

Huang, L.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley.com, 2008).

Huttunen, M. J.

Jackson, J. D.

J. D. Jackson and R. F. Fox, “Classical electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Jiao, X.

Jin, G.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Jones, A. C.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Kauranen, M.

Khurgin, J. B.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Krenz, P. M.

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Kumara, M. T.

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[Crossref] [PubMed]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lei, D. Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Li, Z.-Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Linden, S.

Link, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Luo, Y.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Maier, S. A.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Majewski, M. L.

Maye, M. M.

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

Meng, X.

X. Meng, R. R. Grote, and R. M. Osgood, “Engineering 3d metal nanoantenna for fluorescence enhancement,” in “CLEO: Applications and Technology,” (Optical Society of America, 2013), pp. JTu4A–55.

Min, C.

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Moshchalkov, V.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Nam, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Nitzan, A.

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

Nordlander, P.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[Crossref]

P. Bharadwaj, L. Novotny, and et al., “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15, 14266–14274 (2007).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
[Crossref]

Nykypanchuk, D.

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

Olmon, R. L.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref] [PubMed]

Osgood, R. M.

X. Meng, R. R. Grote, and R. M. Osgood, “Engineering 3d metal nanoantenna for fluorescence enhancement,” in “CLEO: Applications and Technology,” (Optical Society of America, 2013), pp. JTu4A–55.

Park, Y.-S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Pendry, J. B.

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Quinten, M.

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-Vch, 2010).

Rakic, A. D.

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Raschke, M. B.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16, 20295–20305 (2008).
[Crossref] [PubMed]

Rho, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Samra, A. S.

B. B. Yousif and A. S. Samra, “Optical responses of plasmonic gold nanoantennas through numerical simulation,” J. Nanopart. Res. 15, 1–15 (2013).
[Crossref]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Sfeir, M. Y.

H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
[Crossref] [PubMed]

Shan, J.

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

Sherman, W. B.

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

Silhanek, A.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Singh, R.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Skrabalak, S. E.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Smisdom, N.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Soref, R.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[Crossref]

Sun, G.

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[Crossref]

Tan, Q.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Taylor, A. J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Valev, V.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

van der Lelie, D.

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

Verbiest, T.

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

Veronis, G.

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express 17, 10757–10766 (2009).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in “Surface plasmon nanophotonics,” (Springer, 2007), pp. 169–182.
[Crossref]

Wegener, M.

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Wiley, B. J.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Willingham, B.

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
[Crossref]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Xia, Y. N.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

Xiong, H.

H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
[Crossref] [PubMed]

Yin, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Yousif, B. B.

B. B. Yousif and A. S. Samra, “Optical responses of plasmonic gold nanoantennas through numerical simulation,” J. Nanopart. Res. 15, 1–15 (2013).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Zentgraf, T.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Zhang, S.

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Zhou, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
[Crossref]

ACS Nano. (1)

D. Y. Lei, A. Aubry, Y. Luo, S. A. Maier, and J. B. Pendry, “Plasmonic interaction between overlapping nanowires,” ACS Nano. 5, 597–607 (2010).
[Crossref] [PubMed]

Adv. Opt. Photon. (1)

Am. J. Phys. (1)

J. D. Jackson and R. F. Fox, “Classical electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

B. Willingham, D. Brandl, and P. Nordlander, “Plasmon hybridization in nanorod dimers,” Appl. Phys. B 93, 209–216 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. B. Khurgin, G. Sun, and R. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93, 021120 (2008).
[Crossref]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243– 247 (1998).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

J. Chem. Phys. (1)

J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys. 75, 1139–1152 (1981).
[Crossref]

J. Nanopart. Res. (1)

B. B. Yousif and A. S. Samra, “Optical responses of plasmonic gold nanoantennas through numerical simulation,” J. Nanopart. Res. 15, 1–15 (2013).
[Crossref]

Laser Med. Sci. (1)

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (pptt) using gold nanoparticles,” Laser Med. Sci. 23, 217–228 (2008).
[Crossref]

Light Sci. Appl. (1)

L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, “Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity,” Light Sci. Appl. 2, e70 (2013).
[Crossref]

Nano Lett. (4)

H. Xiong, M. Y. Sfeir, and O. Gang, “Assembly, structure and optical response of three-dimensional dynamically tunable multicomponent superlattices,” Nano Lett. 10, 4456–4462 (2010).
[Crossref] [PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. Xia, and M. B. Raschke, “Mid-ir plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9, 2553–2558 (2009).
[Crossref] [PubMed]

V. Valev, N. Smisdom, A. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. Moshchalkov, and T. Verbiest, “Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures,” Nano Lett. 9, 3945–3948 (2009).
[Crossref] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8, 3357–3363 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and et al., “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Nature (London) (2)

D. Nykypanchuk, M. M. Maye, D. van der Lelie, and O. Gang, “Dna-guided crystallization of colloidal nanoparticles,” Nature (London) 451, 549–552 (2008).
[Crossref]

P. Zijlstra, J. W. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature (London) 459, 410–413 (2009).
[Crossref]

Nature Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010).
[Crossref]

Nature Nanotech. (1)

M. M. Maye, M. T. Kumara, D. Nykypanchuk, W. B. Sherman, and O. Gang, “Switching binary states of nanoparticle superlattices and dimer clusters by dna strands,” Nature Nanotech. 5, 116–120 (2009).
[Crossref]

Nature Photon. (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nature Photon. 3, 654–657 (2009).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (3)

J. Dadap, J. Shan, K. Eisenthal, and T. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[Crossref]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
[Crossref] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[Crossref] [PubMed]

Plasmonics (2)

C. Forestiere, A. Handin, and L. Dal Negro, “Enhancement of molecular fluorescence in the uv spectral range using aluminum nanoantennas,” Plasmonics 9(3), 1–11 (2014).
[Crossref]

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1, 5–33 (2006).
[Crossref] [PubMed]

Other (8)

E. N. Economou, Green’s Functions in Quantum Physics, vol. 3 (Springer, 1984).

G. Veronis and S. Fan, “Overview of simulation techniques for plasmonic devices,” in “Surface plasmon nanophotonics,” (Springer, 2007), pp. 169–182.
[Crossref]

C. Dyes, “Biotium Inc.,” http://www.biotium.com/ (2013).

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley-Vch, 2010).

L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
[Crossref]

X. Meng, R. R. Grote, and R. M. Osgood, “Engineering 3d metal nanoantenna for fluorescence enhancement,” in “CLEO: Applications and Technology,” (Optical Society of America, 2013), pp. JTu4A–55.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall Englewood Cliffs, 1984).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley.com, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A conceptual or notional sketch showing how the choice of nanodimer type (a spherical and ellipsoidal dimer with a fixed volume are shown here) selectively enhances a certain fluorescence-emission wavelength region. Only a very limited tuning of the dimers spectral response is achieved by changes in the interdimer-nanoparticle spacing. For example, when the dimer spacing is adjusted by 1nm, the resonance will shift from solid curve to dash line. (b) Spectral shifting and variation in fluorescence enhancement can also be achieved with a change in dimer radius (solid lines). The larger enhancement due to shape effect is shown for comparison (dotted lines).
Fig. 2
Fig. 2 (a) A schematic illustration of an antenna-dye system under laser illumination. (b) Two-level system for dye molecules in free space. (c) Two-level system for dye molecules near metallic nanoantennae.
Fig. 3
Fig. 3 The intensity enhancement measured at the center of the gap using TCM is presented as the dashed curve (blue) for a dimer structure with two 40nm-radius spherical Au particles under the illumination of 663nm light; the solid dot (red) is the result from FDTD simulations and the solid curve (red) is an interpolation based on FDTD results; note that the curves continue to diverge at smaller interatomic spacings of the dimer.
Fig. 4
Fig. 4 (a) Plot of the intensity distribution of a dye/dimer complex under illumination by a cw source at the maximum absorption frequency of dye molecules, i.e. 562nm. (b) The intensity distribution for an excited dye molecule at its maximum emission frequency, i.e. 583nm. (c) A comparison of calculations of excitation rate γ exc / γ exc o using TCM theory (dashed lines) with calculated curves using FDTD (solid lines) for three dye molecules. Also, the FDTD calculated the quantum yield q as a function of dimer separation for different spacing. (d) The calculated emission rate γ em / γ em o and as a function of dimer separation for different particle sizes.
Fig. 5
Fig. 5 (a) The intensity distribution under illumination from a cw source, having the absorption wavelength of a specific dye molecule. (b) Calculated excitation rate, γ exc / γ exc o, and quantum yield, q, as a function of dimer separation. (c) Calculated emission rate, γ em / γ em o, as a function of dimer separation.
Fig. 6
Fig. 6 (a) The intensity distribution, I, due to the illumination of a cw source at the maximum absorption wavelength of the three dye molecules. (b) Calculated excitation rate, γ exc / γ exc o, and quantum yield, q, as a function of dimer separation. (c) Calculated emission rate γ em / γ em o and as a function of dimer separation for different particle sizes.

Tables (1)

Tables Icon

Table 1 Summary of the maximum fluorescence enhancement for each dye molecules

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

γ em γ em 0 = γ exc γ exc 0 q q 0
γ exc γ exc 0 = | E ( r ) | 2 | E 0 ( r ) | 2
q = γ rad / γ rad 0 γ rad / γ rad 0 + γ nrad / γ nrad 0 + ( 1 q 0 ) / q 0
d a 1 d t = i ω 1 a 1 γ n rad + γ rad 2 a 1 + κ in s + + γ 12 2 a 2
d a 2 d t = i ω 2 a 2 γ n rad + γ rad 2 a 2 + κ in s + + γ 21 2 a 1
γ rad = γ rad 4 π = ( 2 π r 0 λ ) 3 ω 1 + 2 ε D
γ c = ω 2 ε o mode [ ε ( r ) ε d ] E 1 * ( r ) E 2 ( r ) d V | a | 2
a = 2 κ in ( γ rad + γ n rad γ c ) 2 j ( ω ω o ) s + ,
E ( r , θ ) = E 0 ( cos θ e r sin θ e θ ) + α ( ω ) 4 π ε 0 E 0 r 3 ( 2 cos θ e r + sin θ e θ )
α ( ω ) = 4 π ε o r 0 3 ε M ( ω ) ε D ( ω ) ε M ( ω ) + 2 ε D ( ω )
α = 4 π a b c ε M ε D 3 ε D + 3 L ( ε M ε D )
L = 1 e 2 e 2 ( 1 + 1 2 e ln 1 + e 1 e )

Metrics