Abstract

Three-dimensional bulk modification of dielectric materials by multiphoton absorption of laser pulses is a well-established technology. The use of multiphoton absorption to machine bulk silicon has been investigated by a number of authors using femtosecond laser sources. However, no modifications confined in bulk silicon, induced by multiphoton absorption, have been reported so far. Based on results from numerical simulations, we employed an erbium-doped fiber laser operating at a relatively long pulse duration of 3.5 nanoseconds and a wavelength of 1549 nm for this process. We found that these laser parameters are suitable to produce modifications at various depths inside crystalline silicon.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Morphology of single picosecond pulse subsurface laser-induced modifications of sapphire and subsequent selective etching

L. Capuano, R. Pohl, R. M. Tiggelaar, J. W. Berenschot, J. G. E. Gardeniers, and G. R. B. E. Römer
Opt. Express 26(22) 29283-29295 (2018)

Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon

Q. Li, M. Chambonneau, M. Chanal, and D. Grojo
Appl. Opt. 55(33) 9577-9583 (2016)

Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses

Isamu Miyamoto, Kristian Cvecek, and Michael Schmidt
Opt. Express 19(11) 10714-10727 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  2. J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
    [Crossref]
  3. N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
    [Crossref]
  4. E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
    [Crossref]
  5. M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
    [Crossref] [PubMed]
  6. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [Crossref] [PubMed]
  7. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
    [Crossref]
  8. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]
  9. A. H. Nejadmalayeri, P. R. Herman, J. Burghoff, M. Will, S. Nolte, and A. Tünnermann, “Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses,” Opt. Lett. 30, 964 (2005).
    [Crossref] [PubMed]
  10. V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
    [Crossref]
  11. E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).
  12. E. Ohmura, “Temperature rise of silicon due to absorption of permeable pulse laser,” in “Heat Transfer - Engineering Applications,”, V. S. Vikhrenko, ed. (InTech, 2011), Chap. 2.
    [Crossref]
  13. Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).
  14. R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
    [Crossref]
  15. E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
    [Crossref]
  16. L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
    [Crossref]
  17. V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37, 3369 (2012).
    [Crossref]
  18. S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
    [Crossref]
  19. P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).
  20. P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
    [Crossref]
  21. G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μm at elevated temperatures,” Appl. Phys. Lett. 41, 594–596 (1982).
    [Crossref]
  22. E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
    [Crossref]
  23. A. Singh, “Free charge carrier induced refractive index modulation of crystalline silicon,” in “IEEE International Conference on Group IV Photonics,” (2010), pp. 102–104.
  24. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
    [Crossref]
  25. A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
    [Crossref]
  26. H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
    [Crossref]
  27. A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
    [Crossref]
  28. A. Lietoila and J. F. Gibbons, “Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 3207–3213 (1982).
    [Crossref]
  29. J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48, 501–509 (2005).
    [Crossref]
  30. M. W. Chase, “NIST-JANAF thermochemical tables,” J. Phys. Chem. Ref. Data Monograph9 (1998).
  31. M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010).
    [Crossref]
  32. N. G. Nilsson, “Band-to-band Auger recombination in silicon and germanium,” Phys. Scripta 8, 165 (1973).
    [Crossref]
  33. C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
    [Crossref]
  34. F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
    [Crossref]
  35. T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).
    [Crossref]
  36. M. Kumagai, T. Sakamoto, and E. Ohmura, “Laser processing of doped silicon wafer by the stealth dicing,” in “International Symposium on Semiconductor Manufacturing 2007,” (2007).
  37. J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
    [Crossref]
  38. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    [Crossref] [PubMed]
  39. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express 13, 1468–1476 (2005).
    [Crossref] [PubMed]

2014 (4)

M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
[Crossref] [PubMed]

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
[Crossref]

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

2013 (3)

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

T. Wang, N. Venkatram, J. Gosciniak, Y. Cui, G. Qian, W. Ji, and D. T. H. Tan, “Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths,” Opt. Express 21, 32192–32198 (2013).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

2012 (2)

V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37, 3369 (2012).
[Crossref]

V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
[Crossref]

2011 (2)

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

2010 (2)

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
[Crossref]

M. J. Nasse and J. C. Woehl, “Realistic modeling of the illumination point spread function in confocal scanning optical microscopy,” J. Opt. Soc. Am. A 27, 295–302 (2010).
[Crossref]

2008 (3)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

2007 (1)

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

2006 (3)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

2005 (4)

2001 (1)

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

1987 (1)

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[Crossref]

1986 (1)

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

1982 (2)

A. Lietoila and J. F. Gibbons, “Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 3207–3213 (1982).
[Crossref]

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μm at elevated temperatures,” Appl. Phys. Lett. 41, 594–596 (1982).
[Crossref]

1979 (1)

F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
[Crossref]

1973 (1)

N. G. Nilsson, “Band-to-band Auger recombination in silicon and germanium,” Phys. Scripta 8, 165 (1973).
[Crossref]

1964 (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Audet, Y.

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

Barthelat, F.

M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
[Crossref] [PubMed]

Beraun, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48, 501–509 (2005).
[Crossref]

Bergmann, R. B.

V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
[Crossref]

Berz, F.

F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
[Crossref]

Betz, J.

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

Boggess, T. F.

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

Boulais, E.

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

Boyd, I. W.

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

Bradby, J. E.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

Bristow, A. D.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
[Crossref]

Bülters, M.

V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
[Crossref]

Burghoff, J.

Chase, M. W.

M. W. Chase, “NIST-JANAF thermochemical tables,” J. Phys. Chem. Ref. Data Monograph9 (1998).

Chateauneuf, A.

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

Chen, J.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48, 501–509 (2005).
[Crossref]

Cooper, R. W.

F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
[Crossref]

Cui, Y.

Dastjerdi, A. K.

M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
[Crossref] [PubMed]

Delaporte, P.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

Dianov, E. M.

Durst, M.

Esashi, M.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Fagg, S.

F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
[Crossref]

Fantoni, J.

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

Fujita, M.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Fukumitsu, K.

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

Fukuyo, F.

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

Gagnon, Y.

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

Gamaly, E. G.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gibbons, J. F.

A. Lietoila and J. F. Gibbons, “Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 3207–3213 (1982).
[Crossref]

Glassbrenner, C. J.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Gololobov, V. M.

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

Gosciniak, J.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
[Crossref]

Grojo, D.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

Haberl, B.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Herman, P. R.

Hirao, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Huis in ’t Veld, A. J.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

Izawa, Y.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Jellison, G. E.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μm at elevated temperatures,” Appl. Phys. Lett. 41, 594–596 (1982).
[Crossref]

Ji, W.

Juodkazis, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Kikuchi, H.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Knippels, G. H. M.

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

Kononenko, V. V.

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

V. V. Kononenko, V. V. Konov, and E. M. Dianov, “Delocalization of femtosecond radiation in silicon,” Opt. Lett. 37, 3369 (2012).
[Crossref]

Konov, V. I.

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

Konov, V. V.

Kumagai, M.

M. Kumagai, T. Sakamoto, and E. Ohmura, “Laser processing of doped silicon wafer by the stealth dicing,” in “International Symposium on Semiconductor Manufacturing 2007,” (2007).

Leyder, S.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

Lietoila, A.

A. Lietoila and J. F. Gibbons, “Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 3207–3213 (1982).
[Crossref]

Lowndes, D. H.

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μm at elevated temperatures,” Appl. Phys. Lett. 41, 594–596 (1982).
[Crossref]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Marine, W.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

Meunier, M.

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

Mirkhalaf, M.

M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
[Crossref] [PubMed]

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Miura, K.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Miyanaga, N.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Morita, H.

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

Moss, S. C.

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

Nasse, M. J.

Nejadmalayeri, A. H.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Nilsson, N. G.

N. G. Nilsson, “Band-to-band Auger recombination in silicon and germanium,” Phys. Scripta 8, 165 (1973).
[Crossref]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Nolte, S.

Ohmura, E.

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

E. Ohmura, “Temperature rise of silicon due to absorption of permeable pulse laser,” in “Heat Transfer - Engineering Applications,”, V. S. Vikhrenko, ed. (InTech, 2011), Chap. 2.
[Crossref]

M. Kumagai, T. Sakamoto, and E. Ohmura, “Laser processing of doped silicon wafer by the stealth dicing,” in “International Symposium on Semiconductor Manufacturing 2007,” (2007).

Oron, D.

Ownby, P. D.

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Parsi Sreenivas, V. V.

V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
[Crossref]

Peters, J. E.

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Poznich, C. R.

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Qian, G.

Qiu, J.

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

Rapp, L.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

Richter, J. C.

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Rode, A. V.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

Römer, G. R. B. E.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

Rosenfeld, A.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
[Crossref]

Rotenberg, N.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

Sakamoto, T.

M. Kumagai, T. Sakamoto, and E. Ohmura, “Laser processing of doped silicon wafer by the stealth dicing,” in “International Symposium on Semiconductor Manufacturing 2007,” (2007).

Savaria, Y.

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

Sentis, M.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

Silberberg, Y.

Singh, A.

A. Singh, “Free charge carrier induced refractive index modulation of crystalline silicon,” in “IEEE International Conference on Group IV Photonics,” (2010), pp. 102–104.

Singh, R.

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

Slack, G. A.

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Smirl, A. L.

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

Stoian, R.

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
[Crossref]

Tal, E.

Tan, D. T. H.

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Thomas, D. W.

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Tsurumi, Y.

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

Tünnermann, A.

Tzou, D.

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48, 501–509 (2005).
[Crossref]

Utéza, O.

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

van Driel, H. M.

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[Crossref]

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

van Howe, J.

Venkatram, N.

Verburg, P. C.

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

Wang, T.

Will, M.

Williams, J. S.

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

Woehl, J. C.

Xu, C.

Zavedeev, E. V.

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

Zhu, G.

Zipfel, W.

Appl. Phys. A: Mater. (2)

L. Rapp, B. Haberl, J. E. Bradby, E. G. Gamaly, J. S. Williams, and A. V. Rode, “Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface,” Appl. Phys. A: Mater. 114, 33–43 (2014).
[Crossref]

P. C. Verburg, G. R. B. E. Römer, and A. J. Huis in ’t Veld, “Two-temperature model for pulsed-laser–induced subsurface modifications in Si,” Appl. Phys. A: Mater. 114, 1135–1143 (2014).
[Crossref]

Appl. Phys. Lett. (3)

G. E. Jellison and D. H. Lowndes, “Optical absorption coefficient of silicon at 1.152 μm at elevated temperatures,” Appl. Phys. Lett. 41, 594–596 (1982).
[Crossref]

A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm,” Appl. Phys. Lett. 90, 191104 (2007).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882–884 (1997).
[Crossref]

IEEE Trans. Circuits Syst. II, Exp. Briefs (1)

R. Singh, Y. Audet, Y. Gagnon, Y. Savaria, E. Boulais, and M. Meunier, “A laser-trimmed rail-to-rail precision CMOS operational amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs 58, 75–79 (2011).
[Crossref]

IEEE Trans. Electron Dev. (1)

E. Boulais, J. Fantoni, A. Chateauneuf, Y. Savaria, and M. Meunier, “Laser-induced resistance fine tuning of integrated polysilicon thin-film resistors,” IEEE Trans. Electron Dev. 58, 572–575 (2011).
[Crossref]

Int. J. Heat Mass Transf. (1)

J. Chen, D. Tzou, and J. Beraun, “Numerical investigation of ultrashort laser damage in semiconductors,” Int. J. Heat Mass Transf. 48, 501–509 (2005).
[Crossref]

J. Achiev. Mater. Manuf. Eng. (1)

E. Ohmura, F. Fukuyo, K. Fukumitsu, and H. Morita, “Internal modified-layer formation mechanism into silicon with nanosecond laser,” J. Achiev. Mater. Manuf. Eng. 17, 381 (2006).

J. Appl. Phys. (2)

A. L. Smirl, I. W. Boyd, T. F. Boggess, S. C. Moss, and H. M. van Driel, “Structural changes produced in silicon by intense 1-μm ps pulses,” J. Appl. Phys. 60, 1169–1182 (1986).
[Crossref]

A. Lietoila and J. F. Gibbons, “Computer modeling of the temperature rise and carrier concentration induced in silicon by nanosecond laser pulses,” J. Appl. Phys. 53, 3207–3213 (1982).
[Crossref]

J. Eur. Opt. Soc. Rapid Pub. (1)

V. V. Parsi Sreenivas, M. Bülters, and R. B. Bergmann, “Microsized subsurface modification of mono-crystalline silicon via non-linear absorption,” J. Eur. Opt. Soc. Rapid Pub. 7, 12035 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

J. Qiu, K. Miura, and K. Hirao, “Femtosecond laser-induced microfeatures in glasses and their applications,” J. Non-Cryst. Solids 354, 1100–1111 (2008).
[Crossref]

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

E. V. Zavedeev, V. V. Kononenko, V. M. Gololobov, and V. I. Konov, “Modeling the effect of fs light delocalization in Si bulk,” Laser Phys. Lett. 11, 036002 (2014).
[Crossref]

Nat. Commun. (1)

M. Mirkhalaf, A. K. Dastjerdi, and F. Barthelat, “Overcoming the brittleness of glass through bio-inspiration and micro-architecture,” Nat. Commun. 5, 3166 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

C. J. Glassbrenner and G. A. Slack, “Thermal conductivity of silicon and germanium from 3°K to the melting point,” Phys. Rev. 134, A1058–A1069 (1964).
[Crossref]

Phys. Rev. B (2)

H. M. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses,” Phys. Rev. B 35, 8166–8176 (1987).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Phys. Rev. Lett. (1)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[Crossref] [PubMed]

Phys. Scripta (1)

N. G. Nilsson, “Band-to-band Auger recombination in silicon and germanium,” Phys. Scripta 8, 165 (1973).
[Crossref]

Proc. SPIE (2)

S. Leyder, D. Grojo, P. Delaporte, W. Marine, M. Sentis, and O. Utéza, “Multiphoton absorption of 1.3 μm wavelength femtosecond laser pulses focused inside Si and SiO2,” Proc. SPIE 8770, 877004 (2013).
[Crossref]

J. E. Peters, P. D. Ownby, C. R. Poznich, J. C. Richter, and D. W. Thomas, “Infrared absorption of Czochralski germanium and silicon,” Proc. SPIE 4452, 17–24 (2001).
[Crossref]

Prog. Quantum Electron. (1)

E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).
[Crossref]

Quantum Electron. (1)

N. M. Bulgakova, R. Stoian, and A. Rosenfeld, “Laser-induced modification of transparent crystals and glasses,” Quantum Electron. 40, 966 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92, 1305–1310 (2008).
[Crossref]

Solid State Electron. (1)

F. Berz, R. W. Cooper, and S. Fagg, “Recombination in the end regions of pin diodes,” Solid State Electron. 22, 293–301 (1979).
[Crossref]

Other (6)

M. W. Chase, “NIST-JANAF thermochemical tables,” J. Phys. Chem. Ref. Data Monograph9 (1998).

A. Singh, “Free charge carrier induced refractive index modulation of crystalline silicon,” in “IEEE International Conference on Group IV Photonics,” (2010), pp. 102–104.

P. C. Verburg, G. R. B. E. Römer, G. H. M. Knippels, J. Betz, and A. J. Huis in ’t Veld, “Experimental validation of model for pulsed-laser–induced subsurface modifications in Si,” in “Proceedings of the 13th International Symposium on Laser Precision Microfabrication, June 12–15 2012, Washington DC, USA,” (2012).

E. Ohmura, “Temperature rise of silicon due to absorption of permeable pulse laser,” in “Heat Transfer - Engineering Applications,”, V. S. Vikhrenko, ed. (InTech, 2011), Chap. 2.
[Crossref]

Y. Izawa, S. Tanaka, H. Kikuchi, Y. Tsurumi, N. Miyanaga, M. Esashi, and M. Fujita, “Debris-free in-air laser dicing for multi-layer MEMS by perforated internal transformation and thermally-induced crack propagation,” in “IEEE 21st International Conference on Micro Electro Mechanical Systems,” (2008).

M. Kumagai, T. Sakamoto, and E. Ohmura, “Laser processing of doped silicon wafer by the stealth dicing,” in “International Symposium on Semiconductor Manufacturing 2007,” (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic overview of the process to fracture silicon wafers, using pulsed-laser–induced subsurface modifications. First, laser-induced modifications are created below the surface of the wafer (top). The modifications are indicated by asterisks (*). Next, an external force is exerted on the wafer, which causes the wafer to separate along the planes containing laser modifications (bottom).
Fig. 2
Fig. 2 Cross-section of the axisymmetric laser intensity distribution inside silicon [arbitrary units]. The black line indicates the contour where the intensity has dropped to a factor 1/e2 of the peak intensity. The laser beam has a Gaussian spatial distribution before entering the objective. The 1/e2 radius of the beam fills 80 percent of the aperture of the objective. The beam is focused 100 μm below the surface, which matches the coverslip correction of the microscope objective. Wavelength: 1549 nm, beam quality: M2 = 1.1, numerical aperture: 0.7, refractive index: 3.5. Note the difference in scale between the horizontal and vertical axis, the focal volume is strongly elongated along the optical axis.
Fig. 3
Fig. 3 Schematic overview of the experimental setup. WP: Waveplate, PBS: polarizing beamsplitter, ND: neutral density, dof: degrees of freedom, CCD: charge-coupled device.
Fig. 4
Fig. 4 Schematic drawing of a cross-section of a silicon wafer, showing a pattern of subsurface modifications. The propagation direction of the laser beam is from top to bottom. Dense layers with a close spacing between the modifications are intended to fracture the wafer along the plane containing the laser-induced modifications. Separate modifications are required to study the properties of single-pulse modifications, without the laser beam interacting with previously modified material.
Fig. 5
Fig. 5 Brightfield optical microscopy (top) and infrared transmission microscopy (bottom) images of a track of subsurface modifications (top view). Two surface grooves were produced above and below the track. Pulse energy on-sample: 1.3 μJ, focal spot: 70 μm below the surface.
Fig. 6
Fig. 6 Laser scanning confocal microscopy image (integrated intensity) of a fracture plane containing pulsed-laser–induced subsurface modifications. Three layers of modifications at different focus depths are visible. The lateral spacing between the laser-induced modifications is 2 μm. Pulse energy on-sample: 1.3 μJ. A 250-μm thick quartz window was used to protect the objective. The laser beam propagation direction is from top to bottom.
Fig. 7
Fig. 7 Scanning electron microscopy image of a fracture plane containing pulsed-laser–induced subsurface modifications. A detail of the 2nd layer in Fig. 6 is shown.
Fig. 8
Fig. 8 Laser scanning confocal microscopy image (integrated intensity) of a fractured sample. Two layers of dense modifications (top and bottom) and a layer of separate single-pulse modifications (middle) are visible. The dense layers ensure that the sample fractures along the plane containing the modifications that are to be analyzed. On-sample pulse energy dense layers: 2 μJ, pulse energy single-pulse modifications: 0.7 μJ, transverse spacing dense layers: 2 μm, spacing single-pulse modifications: 20 μm. A 250-μm thick quartz window was used to protect the objective. The laser beam propagation direction is from top to bottom.
Fig. 9
Fig. 9 Overview of experimentally obtained lengths of subsurface modifications along the optical axis, as a function of the pulse energy. Focal spot: 100 μm below the surface.

Tables (1)

Tables Icon

Table 1 Overview of processing conditions that were previously investigated for the formation of laser-induced subsurface modifications in crystalline silicon. λ: Wavelength, # photons: the number of photons involved in the interband absorption of laser energy, NA: numerical aperture.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P critical = λ 2 2 π n 0 n 2 ,

Metrics