Abstract

Imaging based on coherent anti-Stokes Raman scattering (CARS) relies on the interaction of high peak-power, synchronized picosecond pulses with narrow bandwidths and a well-defined frequency difference. Recently a new type of fiber-based CARS laser source based on four-wave-mixing (FWM) has been developed. In order to enhance its spectral resolution and efficiency, a FWM based fiber optical parametric oscillator (FOPO) is proposed in this work. The source delivers 180 mW with 5.6 kW peak power for the CARS pump and 130 mW with 2.9 kW peak power for the Stokes signal. CARS resonances around 2850 and 2930 cm−1 can be resolved with a resolution of 1 cm−1 enabling high-contrast, spectrally resolved CARS imaging of biological tissue.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy

Mario Chemnitz, Martin Baumgartl, Tobias Meyer, Cesar Jauregui, Benjamin Dietzek, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(24) 26583-26595 (2012)

Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing

Thomas Gottschall, Martin Baumgartl, Aude Sagnier, Jan Rothhardt, Cesar Jauregui, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(11) 12004-12013 (2012)

All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion

Martin Baumgartl, Mario Chemnitz, Cesar Jauregui, Tobias Meyer, Benjamin Dietzek, Jürgen Popp, Jens Limpert, and Andreas Tünnermann
Opt. Express 20(4) 4484-4493 (2012)

References

  • View by:
  • |
  • |
  • |

  1. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
    [Crossref] [PubMed]
  2. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
    [Crossref] [PubMed]
  3. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, “Fiber laser-based light source for coherent anti-Stokes Raman scattering microspectroscopy,” Opt. Express 15(8), 4848–4856 (2007).
    [Crossref] [PubMed]
  4. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [Crossref] [PubMed]
  5. D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
    [Crossref] [PubMed]
  6. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
    [Crossref] [PubMed]
  7. L. Lavoute, J. C. Knight, P. Dupriez, and W. J. Wadsworth, “High power red and near-IR generation using four wave mixing in all integrated fibre laser systems,” Opt. Express 18(15), 16193–16205 (2010).
    [Crossref] [PubMed]
  8. T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
    [Crossref] [PubMed]
  9. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
    [Crossref] [PubMed]
  10. M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
    [Crossref] [PubMed]
  11. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett. 35(14), 2427–2429 (2010).
    [Crossref] [PubMed]
  12. Y. Q. Xu and S. G. Murdoch, “High conversion efficiency fiber optical parametric oscillator,” Opt. Lett. 36(21), 4266–4268 (2011).
    [Crossref] [PubMed]
  13. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
    [Crossref] [PubMed]
  14. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
    [Crossref] [PubMed]
  15. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
    [Crossref] [PubMed]
  16. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234–1236 (2005).
    [Crossref] [PubMed]
  17. K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26(1), 10–12 (2001).
    [Crossref] [PubMed]

2013 (2)

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

2012 (4)

2011 (2)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Y. Q. Xu and S. G. Murdoch, “High conversion efficiency fiber optical parametric oscillator,” Opt. Lett. 36(21), 4266–4268 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

2002 (1)

2001 (1)

Agrawal, G. P.

Akimov, D.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Andresen, E. R.

Baumgartl, M.

Bergner, N.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Bielecki, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Brehm, B. R.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Cerullo, G.

Chemnitz, M.

Cheung, K. K. Y.

Chui, P. C.

Deng, Y.

Dietzek, B.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[Crossref] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
[Crossref] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Dupriez, P.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

Fiorentino, M.

Fu, D.

Gambetta, A.

Gottschall, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express 20(11), 12004–12013 (2012).
[Crossref] [PubMed]

Herda, R.

Holtom, G. R.

Inoue, K.

Jauregui, C.

Ji, M.

Kalff, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Keiding, S. R.

Knight, J. C.

Knox, W. H.

Kong, L.

Krafft, C.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Kumar, P.

Kumar, V.

Lamb, E. S.

Lavoute, L.

Lefrancois, S.

Li, Q.

Limpert, J.

Lin, Q.

Lu, F.

Manzoni, C.

Marangoni, M.

Matthäus, C.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Meyer, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[Crossref] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
[Crossref] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Mukai, T.

Murdoch, S. G.

Nielsen, C. K.

Nodop, D.

Pascher, T.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Popp, J.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express 20(4), 4484–4493 (2012).
[Crossref] [PubMed]

M. Chemnitz, M. Baumgartl, T. Meyer, C. Jauregui, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Widely tuneable fiber optical parametric amplifier for coherent anti-Stokes Raman scattering microscopy,” Opt. Express 20(24), 26583–26595 (2012).
[Crossref] [PubMed]

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Ramponi, R.

Reichart, R.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Romeike, B. F.

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Romeike, B. F. M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Rothhardt, J.

Sagnier, A.

Schimpf, D.

Schmitt, M.

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Schneider, P.

Sharping, J. E.

Sunney Xie, X.

Thøgersen, J.

Tünnermann, A.

Wadsworth, W. J.

Windeler, R. S.

Wise, F. W.

Wong, K. K. Y.

Xie, X. S.

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

Xu, Y. Q.

Yang, S.

Zach, A.

Zhou, Y.

Anal. Chem. (1)

T. Meyer, M. Chemnitz, M. Baumgartl, T. Gottschall, T. Pascher, C. Matthäus, B. F. M. Romeike, B. R. Brehm, J. Limpert, A. Tünnermann, M. Schmitt, B. Dietzek, and J. Popp, “Expanding Multimodal Microscopy by High Spectral Resolution Coherent Anti-Stokes Raman Scattering Imaging for Clinical Disease Diagnostics,” Anal. Chem. 85(14Iss. 14), 6703–6715 (2013).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. 1(1), 883–909 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt. 16(2), 021113 (2011).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (9)

S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. Sunney Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 37(10), 1652–1654 (2012).
[Crossref] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

D. Nodop, C. Jauregui, D. Schimpf, J. Limpert, and A. Tünnermann, “Efficient high-power generation of visible and mid-infrared light by degenerate four-wave-mixing in a large-mode-area photonic-crystal fiber,” Opt. Lett. 34(22), 3499–3501 (2009).
[Crossref] [PubMed]

Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett. 35(14), 2427–2429 (2010).
[Crossref] [PubMed]

Y. Q. Xu and S. G. Murdoch, “High conversion efficiency fiber optical parametric oscillator,” Opt. Lett. 36(21), 4266–4268 (2011).
[Crossref] [PubMed]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, “Optical parametric oscillator based on four-wave mixing in microstructure fiber,” Opt. Lett. 27(19), 1675–1677 (2002).
[Crossref] [PubMed]

E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 38(20), 4154–4157 (2013).
[Crossref] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett. 30(10), 1234–1236 (2005).
[Crossref] [PubMed]

K. Inoue and T. Mukai, “Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier,” Opt. Lett. 26(1), 10–12 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic setup of the FWM-based CARS Source. HWP #1 half-wave plate (zero order, 1030nm), HWP #2 and 3 (zero order, 808nm).
Fig. 2
Fig. 2 Demonstration of the reduction of the output signal bandwidth with (blue lines) and without (black line) signal feedback.
Fig. 3
Fig. 3 (a) Tuning of the output spectrum of the FOPO. (b) Output power and conversion efficiency of the FOPO as a function of the emission wavelength.
Fig. 4
Fig. 4 (a) Output wavelengths of the CARS Pump and average power of CARS pump and Stokes with respect to the delay of the delay stage. (b) Average power of CARS pump and Stokes on target and CARS pump bandwidth in respect of the resonance frequency.
Fig. 5
Fig. 5 Superposed and color-coded CARS signals probing CH2 at 2850 cm−1 (blue) and CH3 at 2930 cm−1 (green). The scale bar corresponds to 200µm.

Metrics