Abstract

We report 3.1-3.2 μm mid-infrared emission from acetylene-filled low loss antiresonant hollow-core fiber pumped with an amplified, modulated, narrowband, tunable 1.5 μm diode laser. The maximum power conversion efficiency of ~30%, with respect to the absorbed pump power, is obtained with a 10.5 m length of fiber at 0.7 mbar. The maximum efficiency with respect to the total incident pump power (~20%) and the minimum pump laser energy required (<50 nJ) are both improved compared to similar work reported previously using an optical parametric oscillator as a pump source. This paper provides an effective route to obtain compact mid-infrared fiber lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers

Zhiyue Zhou, Ni Tang, Zhixian Li, Wei Huang, Zefeng Wang, Wuming Wu, and Weihong Hua
Opt. Express 26(15) 19144-19153 (2018)

Near diffraction-limited performance of an OPA pumped acetylene-filled hollow-core fiber laser in the mid-IR

Neda Dadashzadeh, Manasadevi P. Thirugnanasambandam, H. W. Kushan Weerasinghe, Benoit Debord, Matthieu Chafer, Frederic Gerome, Fetah Benabid, Brian R. Washburn, and Kristan L. Corwin
Opt. Express 25(12) 13351-13358 (2017)

Mid-infrared gas filled photonic crystal fiber laser based on population inversion

Andrew M. Jones, A. V. Vasudevan Nampoothiri, Amarin Ratanavis, Tobias Fiedler, Natalie V. Wheeler, François Couny, Rajesh Kadel, Fetah Benabid, Brian R. Washburn, Kristan L. Corwin, and Wolfgang Rudolph
Opt. Express 19(3) 2309-2316 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
    [Crossref]
  2. C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
    [Crossref]
  3. J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
    [Crossref] [PubMed]
  4. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  5. M. Bernier, V. Fortin, N. Caron, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “Mid-infrared chalcogenide glass Raman fiber laser,” Opt. Lett. 38(2), 127–129 (2013).
    [Crossref] [PubMed]
  6. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  7. M. Bernier, V. Fortin, M. El-Amraoui, Y. Messaddeq, and R. Vallée, “3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber,” Opt. Lett. 39(7), 2052–2055 (2014).
    [Crossref] [PubMed]
  8. T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972).
    [Crossref]
  9. H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975).
    [Crossref]
  10. H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
    [Crossref]
  11. J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
    [Crossref]
  12. C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
    [Crossref]
  13. T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
    [Crossref]
  14. A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
    [Crossref] [PubMed]
  15. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  16. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  17. F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
    [Crossref] [PubMed]
  18. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  19. B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, “Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre,” Opt. Express 18(12), 12381–12390 (2010).
    [Crossref] [PubMed]
  20. A. M. Jones, A. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
    [Crossref] [PubMed]
  21. A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
    [Crossref]
  22. A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).
  23. B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St. J. Russell, “Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF,” Opt. Express 21(24), 29711–29718 (2013).
    [Crossref] [PubMed]
  24. Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
    [Crossref]
  25. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  26. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
    [Crossref] [PubMed]
  27. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
    [Crossref] [PubMed]
  28. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
    [Crossref] [PubMed]
  29. A. E. Siegman, Lasers (University Science Books, Sausalito California, 1986).
  30. W. C. Swann and S. L. Gilbert, “Pressure-induced shift and broadening of 1510-1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17(7), 1263–1270 (2000).
    [Crossref]
  31. C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill Book Company Limited, London, 1972).

2014 (3)

2013 (4)

2012 (4)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).

2011 (2)

2010 (3)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2005 (1)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

2004 (2)

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2000 (1)

1999 (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

1998 (1)

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

1994 (1)

H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
[Crossref]

1975 (1)

H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975).
[Crossref]

1972 (1)

T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972).
[Crossref]

Abdolvand, A.

Alharbi, M.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Baumgart, B.

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).

Beaudou, B.

Belardi, W.

Benabid, F.

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).

A. M. Jones, A. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, “Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre,” Opt. Express 18(12), 12381–12390 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bernier, M.

Biriukov, A. S.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Bouwmans, G.

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Bradley, T.

Campbell, N.

A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

Carbonnier, C.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

Caron, N.

Chang, T. Y.

T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972).
[Crossref]

Corwin, K. L.

Couny, F.

A. M. Jones, A. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, “Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre,” Opt. Express 18(12), 12381–12390 (2010).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Crowell, P. G.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

Dadashzadeh, N.

Dianov, E. M.

Ehrenreich, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

El-Amraoui, M.

Euser, T. G.

Fetterman, H. R.

H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975).
[Crossref]

Fiedler, T.

Fortin, V.

Fourcade-Dutin, C.

A. V. Vasudevan Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core optical fiber gas lasers (HOFGLAS): a review (Invited),” Opt. Mater. Express 2(7), 948–961 (2012).

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Gérôme, F.

Gilbert, S. L.

Hager, G.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
[Crossref]

Henderson-Sapir, O.

Hudson, D. D.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

Jones, A. M.

Jones, C. R.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

Kadel, R.

Kalisky, O.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Kalisky, Y.

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Kletecka, C. S.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

Knight, J. C.

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
[Crossref]

Knize, R. J.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Kolyadin, A. N.

Kosolapov, A. F.

Lampson, A. I.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

Li, J.

Light, P. S.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Mao, C.

Maoc, C.

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

McCord, J. E.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

Messaddeq, Y.

Miller, H. C.

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
[Crossref]

Munch, J.

Nampoothiri, A. V.

Nampoothiri, A. V. V.

Nampoothiric, A. V. V.

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Nicholson, J. W.

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

Ottaway, D. J.

Phipps, S. P.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Plotnichenko, V. G.

Pryamikov, A. D.

Radzykewycz, D. T.

H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
[Crossref]

Ratanavis, A.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Rudolph, W.

Russell, P. St. J.

B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St. J. Russell, “Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF,” Opt. Express 21(24), 29711–29718 (2013).
[Crossref] [PubMed]

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Schlossberg, H. R.

H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975).
[Crossref]

Swann, W. C.

Takekoshi, T.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Tobben, H.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

Trabold, B. M.

Unrau, U. B.

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

Vallée, R.

Vasudevan Nampoothiri, A. V.

Wadsworth, W.

Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
[Crossref]

Wadsworth, W. J.

Wang, Y.

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Wang, Y. Y.

Wang, Z.

Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
[Crossref]

Washburn, B. R.

Wheeler, N. V.

Wood, O. R.

T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972).
[Crossref]

Yu, F.

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
[Crossref]

Zhdanov, B.

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

Appl. Phys. Lett. (1)

H. R. Schlossberg and H. R. Fetterman, “Optically pumped vibrational transition laser in OCS,” Appl. Phys. Lett. 26(6), 316–318 (1975).
[Crossref]

Electron. Lett. (2)

T. Ehrenreich, B. Zhdanov, T. Takekoshi, S. P. Phipps, and R. J. Knize, “Diode pumped cesium laser,” Electron. Lett. 41(7), 415–416 (2005).
[Crossref]

C. Carbonnier, H. Tobben, and U. B. Unrau, “Room temperature CW fiber laser at 3.22 μm,” Electron. Lett. 34(9), 893–894 (1998).
[Crossref]

IEEE J. Quantum Electron. (4)

T. Y. Chang and O. R. Wood, “An optically pumped CO2 laser,” IEEE J. Quantum Electron. 8(6), 598 (1972).
[Crossref]

H. C. Miller, D. T. Radzykewycz, and G. Hager, “An optically pumped mid-infrared HBr laser,” IEEE J. Quantum Electron. 30(10), 2395–2400 (1994).
[Crossref]

J. E. McCord, H. C. Miller, G. Hager, A. I. Lampson, and P. G. Crowell, “Experimental investigation of an optically pumped mid-infrared carbon monoxide laser,” IEEE J. Quantum Electron. 35(11), 1602–1612 (1999).
[Crossref]

C. S. Kletecka, N. Campbell, C. R. Jones, J. W. Nicholson, and W. Rudolph, “Cascade lasing of molecular HBr in the four micron region pumped by a Nd:YAG laser,” IEEE J. Quantum Electron. 40(10), 1471–1477 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Eng. (1)

Y. Kalisky and O. Kalisky, “The status of high-power lasers and their applications in the battlefield,” Opt. Eng. 49(9), 091003 (2010).
[Crossref]

Opt. Express (8)

W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22(8), 10091–10096 (2014).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21(8), 9514–9519 (2013).
[Crossref] [PubMed]

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013).
[Crossref] [PubMed]

B. M. Trabold, A. Abdolvand, T. G. Euser, and P. St. J. Russell, “Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow-core PCF,” Opt. Express 21(24), 29711–29718 (2013).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. Ratanavis, N. Campbell, and W. Rudolph, “Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-µm band,” Opt. Express 18(3), 1946–1951 (2010).
[Crossref] [PubMed]

B. Beaudou, F. Couny, Y. Y. Wang, P. S. Light, N. V. Wheeler, F. Gérôme, and F. Benabid, “Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre,” Opt. Express 18(12), 12381–12390 (2010).
[Crossref] [PubMed]

A. M. Jones, A. V. Nampoothiri, A. Ratanavis, T. Fiedler, N. V. Wheeler, F. Couny, R. Kadel, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Mid-infrared gas filled photonic crystal fiber laser based on population inversion,” Opt. Express 19(3), 2309–2316 (2011).
[Crossref] [PubMed]

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

F. Benabid, G. Bouwmans, J. C. Knight, P. St. J. Russell, and F. Couny, “Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen,” Phys. Rev. Lett. 93(12), 123903 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

A. M. Jones, C. Fourcade-Dutin, C. Maoc, B. Baumgart, A. V. V. Nampoothiric, N. Campbell, Y. Wang, F. Benabid, W. Rudolph, B. R. Washburn, and K. L. Corwin, “Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers,” Proc. SPIE 8237, 82373Y (2012).
[Crossref]

Science (3)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (3)

Z. Wang, F. Yu, W. Wadsworth, and J. C. Knight, “1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering,” Optical Fiber Communication Conference, San Francisco, United States, 2014.
[Crossref]

A. E. Siegman, Lasers (University Science Books, Sausalito California, 1986).

C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw-Hill Book Company Limited, London, 1972).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The measured transmission loss of the anti-resonant HC-PCF at shorter (solid line, top x-axis) and longer (dash line, bottom x-axis) wavelength, inset: Scanning electron micrograph of the test fiber.
Fig. 2
Fig. 2 The modulated, amplified pump diode laser setup. CW: Continuous wave; PMF: Polarization-maintaining fiber; FPC: Fiber polarization controller; SOA: Semiconductor optical amplifier; WDM: Wavelength division multiplexer; LD: Laser diode.
Fig. 3
Fig. 3 The measured acetylene (12C2H2) absorption linewidth, the discrete points is the measured data, and the solid lines are the corresponding fitting curves respectively.
Fig. 4
Fig. 4 Acetylene-filled HC-PCF laser setup. SMF: Single-mode fiber; BS: Beam splitter; M: Mirror; λ/4: Quarter-wave plate; λ/2: Half-wave plate; RGC: Acetylene reference gas cell; Ge: Germanium filter; DAQ: Data acquisition card; PC: Personal computer.
Fig. 5
Fig. 5 (a) Measured output optical spectrum of 12C2H2 at 0.7 mbar pressure, 10.5 m length, and 4.2 μJ incident pump energy; (b) Simple energy levels diagram of 12C2H2 showing the pump and laser transitions.
Fig. 6
Fig. 6 (a) Measured output laser pulse energy with acetylene pressure, and the total incident pump pulse energy is ~4.2 μJ; (b) Output laser emission pulse energy is plotted versus the absorbed pump pulse energy at different acetylene pressure; (c) The evolution of the power conversion efficiency with respect to the absorbed pump pulse energy, from top to bottom corresponding to 0.7 mbar, 1 mbar, 2 mbar, 5 mbar, 12 mbar respectively.

Metrics