Abstract

We demonstrated a low-loss CMOS-compatible multi-layer platform using monolithic back-end-of-line (BEOL) integration. 0.8dB/cm propagation loss is measured for the PECVD Si3N4 waveguide at 1580nm wavelength. The loss is further reduced to 0.24dB/cm at 1270nm wavelength, justifying the platform’s feasibility for O-band operation. An inter-layer transition coupler is designed, achieving less than 0.2dB/transition loss across 70nm bandwidth. This is the lowest inter-layer transition loss ever reported. A thermally tuned micro-ring filter is also integrated on the platform, with performance comparable to similar device on SOI platform.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
  2. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [Crossref] [PubMed]
  3. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
    [Crossref]
  4. N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
    [Crossref] [PubMed]
  5. J. F. Bauters, M. L. Davenport, M. J. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
    [Crossref] [PubMed]
  6. T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
    [Crossref]
  7. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
    [Crossref] [PubMed]
  8. W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G. Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
    [Crossref] [PubMed]
  9. L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
    [Crossref]
  10. M. Liu, Y. Huang, W. Wu, and H. Lim, “Broadband quantum-correlated photon-pairs in the O-band generated from a dispersion-engineered silicon waveguide,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference (2013).
    [Crossref]
  11. T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
  12. Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
    [Crossref] [PubMed]
  13. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
    [Crossref] [PubMed]
  14. Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
    [Crossref]
  15. Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
    [Crossref] [PubMed]
  16. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
    [Crossref] [PubMed]
  17. H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
    [Crossref]
  18. Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
    [Crossref] [PubMed]
  19. M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
    [Crossref]
  20. J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
    [Crossref] [PubMed]

2014 (2)

W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G. Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
[Crossref] [PubMed]

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (6)

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[Crossref] [PubMed]

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2008 (2)

2005 (1)

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Ang, K. W.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Aroca, R.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Baehr-Jones, T.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Baeyens, Y.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Barwicz, T.

Bauters, J. F.

Bergman, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

Biberman, A.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

Bowers, J. E.

Buhl, L.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Cai, H.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Chan, J.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

Chen, A.

Chen, L.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett. 36(4), 469–471 (2011).
[Crossref] [PubMed]

Chen, Y. K.

Davenport, M. L.

Ding, L.

Ding, R.

Doerr, C.

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Doerr, C. R.

Doylend, J. K.

Duan, N.

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Fang, A. W.

Fang, Q.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

Gondarenko, A.

Guan, H.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Guo, J.

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Habermehl, S.

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Heck, M. J.

Hendry, G.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

Hochberg, M.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Huang, Y.

Itabashi, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Kee, J. S.

Kou, R.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Kwong, D. L.

Kwong, D.-L.

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Levy, J. S.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

Lim, A. E. J.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Liow, T. Y.

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Lipson, M.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[Crossref] [PubMed]

Liu, Y.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Lo, G. Q.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G. Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
[Crossref] [PubMed]

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
[Crossref] [PubMed]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[Crossref] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

Luo, X.

Ma, Y.

Manipatruni, S.

Mao, S. C.

Mikkelsen, J. C.

Nishi, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Novack, A.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

Park, M. K.

Park, S.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Poitras, C. B.

Poon, J. K. S.

Preston, K.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[Crossref] [PubMed]

Sacher, W. D.

Shaw, M.

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Sherwood-Droz, N.

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

Shi, R. Z.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Shinojima, H.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Song, J.

Song, J. F.

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

Streshinsky, M.

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

Sullivan, C.

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Sun, X. W.

Tan, C. W.

Tao, S. H.

Taylor, B. J. F.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Tu, X.

Tu, X. G.

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

Vawter, G.

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Watanabe, T.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Xiong, Y. Z.

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Xu, Y. L.

Yamada, K.

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

Yang, S. Y.

Yu, M. B.

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
[Crossref] [PubMed]

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[Crossref] [PubMed]

Zhang, H.

Zhang, Y.

ACM J. Emerging Technol. Comput. Syst. (1)

A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman, “Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors,” ACM J. Emerging Technol. Comput. Syst. 7(2), 1–25 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Y. Liow, K. W. Ang, Q. Fang, J. F. Song, Y. Z. Xiong, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Silicon Modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).

T. Tsuchizawa, K. Yamada, T. Watanabe, S. Park, H. Nishi, R. Kou, H. Shinojima, and S. Itabashi, “Monolithic integration of silicon-, germanium-, and silica-based optical devices for telecommunications applications,” IEEE J. Sel. Top. Quantum Electron. 17(3), 516–525 (2011).
[Crossref]

T. Y. Liow, J. F. Song, X. G. Tu, A. E. J. Lim, Q. Fang, N. Duan, M. B. Yu, and G. Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).

IEEE Photon. Technol. Lett. (3)

Q. Fang, J. F. Song, T. Y. Liow, H. Cai, M. B. Yu, G. Q. Lo, and D.-L. Kwong, “Ultralow power silicon photonics thermo-optic switch with suspended phase arms,” IEEE Photon. Technol. Lett. 23(8), 525–527 (2011).
[Crossref]

H. Guan, A. Novack, M. Streshinsky, R. Z. Shi, Y. Liu, Q. Fang, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “High-efficiency low-crosstalk 1310-nm polarization splitter and rotator,” IEEE Photon. Technol. Lett. 26(9), 925–928 (2014).
[Crossref]

L. Chen, C. Doerr, L. Buhl, Y. Baeyens, and R. Aroca, “Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon,” IEEE Photon. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Opt. Express (10)

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

N. Sherwood-Droz and M. Lipson, “Scalable 3D dense integration of photonics on bulk silicon,” Opt. Express 19(18), 17758–17765 (2011).
[Crossref] [PubMed]

J. F. Bauters, M. L. Davenport, M. J. Heck, J. K. Doylend, A. Chen, A. W. Fang, and J. E. Bowers, “Silicon on ultra-low-loss waveguide photonic integration platform,” Opt. Express 21(1), 544–555 (2013).
[Crossref] [PubMed]

Y. Ma, Y. Zhang, S. Y. Yang, A. Novack, R. Ding, A. E. J. Lim, G. Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21(24), 29374–29382 (2013).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, T. Barwicz, J. C. Mikkelsen, B. J. F. Taylor, G. Q. Lo, and J. K. S. Poon, “Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform,” Opt. Express 22(9), 11167–11174 (2014).
[Crossref] [PubMed]

J. Song, X. Luo, X. Tu, M. K. Park, J. S. Kee, H. Zhang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Electrical tracing-assisted dual-microring label‑free optical bio/chemical sensors,” Opt. Express 20(4), 4189–4197 (2012).
[Crossref] [PubMed]

Q. Fang, T. Y. Liow, J. F. Song, C. W. Tan, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Suspended optical fiber-to-waveguide mode size converter for silicon photonics,” Opt. Express 18(8), 7763–7769 (2010).
[Crossref] [PubMed]

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008).
[Crossref] [PubMed]

Q. Fang, J. F. Song, S. H. Tao, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low loss (~6.45dB/cm) sub-micron polycrystalline silicon waveguide integrated with efficient SiON waveguide coupler,” Opt. Express 16(9), 6425–6432 (2008).
[Crossref] [PubMed]

K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express 17(7), 5118–5124 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

M. Shaw, J. Guo, G. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low-loss silicon nitride waveguides,” Proc. SPIE 5720, 109–118 (2005).
[Crossref]

Other (1)

M. Liu, Y. Huang, W. Wu, and H. Lim, “Broadband quantum-correlated photon-pairs in the O-band generated from a dispersion-engineered silicon waveguide,” in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Fabrication process flow for the Si3N4-on-SOI multi-layer platform using back-end integration approach.

Fig. 2
Fig. 2

(a) Simulated TE and TM modal profiles for 400nm-height and 600nm-height Si3N4 waveguides; (b) propagation loss spectrum for the 600nm-height PECVD Si3N4 waveguide (inset: fabricated waveguide SEM images) for both TE (blue) and TM (green) modes, the loss for Si waveguide (black) on the platform. The loss for 400nm-height PECVD (light blue) and LPCVD (red) Si3N4 waveguide from earlier fabrication is also included for comparison.

Fig. 3
Fig. 3

TE mode propagation loss spectrum for the 600nm-height PECVD Si3N4 (blue), 400nm-height LPCVD Si3N4 (red) and Si waveguide (black).

Fig. 4
Fig. 4

(a) Center: schematic diagram of the TC between Si and Si3N4 device layer, left: TE mode profile evolution along the TC, right: SEM images of the fabricated tips in both layers; (b) Stimulated (3D-FDTD) transition loss with respect to overlap length Lo; (c) Measured (dots) and simulated (dotted line) insertion loss of TC with different overlap length; (d) ILTL spectrum for the best (red) and worse (black) TC, inset: best TC at 1310nm wavelength.

Fig. 5
Fig. 5

(a) The SEM (top) and microscope (bottom) images of the micro-ring; (b) Transmission spectrum under different bias-voltage.

Tables (2)

Tables Icon

Table 1 Propagation Loss Comparison for Si, LPCVD and PECVD Si3N4 Waveguides

Tables Icon

Table 2 Performance Benchmarking with State-of-the-art Multi-layer Platforms

Metrics