Abstract

We propose a multifunctional optical switching unit based on the bidirectional liquid crystal on silicon (LCoS) and semiconductor optical amplifier (SOA) architecture. Add/drop, wavelength conversion, format conversion, and WDM multicast are experimentally demonstrated. Due to the bidirectional characteristic, the LCoS device cannot only multiplex the input signals, but also de-multiplex the converted signals. Dual-channel wavelength conversion and format conversion from 2 × 25Gbps differential quadrature phase-shift-keying (DQPSK) to 2 × 12.5Gbps differential phase-shift-keying (DPSK) based on four-wave mixing (FWM) in SOA is obtained with only one pump. One-to-six WDM multicast of 25Gbps DQPSK signals with two pumps is also achieved. All of the multicast channels are with a power penalty less than 1.1 dB at FEC threshold of 3.8 × 10−3.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF

Jian Wang, Hao Huang, Xue Wang, Jeng-Yuan Yang, and Alan E. Willner
Opt. Express 19(19) 18246-18252 (2011)

All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA

Yu Yu, Bingrong Zou, Wenhan Wu, and Xinliang Zhang
Opt. Express 19(15) 14720-14725 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express 19(19), 18246–18252 (2011).
    [Crossref] [PubMed]
  2. A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
    [Crossref]
  3. P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable optical add/drop multiplexer based on bidirectional wavelength selective switches,” In Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWB1.
  4. R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
    [Crossref] [PubMed]
  5. Y. Yu, B. R. Zou, W. H. Wu, and X. L. Zhang, “All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA,” Opt. Express 19(15), 14720–14725 (2011).
    [Crossref] [PubMed]
  6. M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
    [Crossref] [PubMed]
  7. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]
  8. M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN,” Opt. Express 21(23), 28809–28816 (2013).
    [Crossref] [PubMed]
  9. N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide,” Opt. Express 20(6), 6488–6495 (2012).
    [Crossref] [PubMed]
  10. G.-W. Lu and T. Miyazaki, “Optical phase add/drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” Photon. Technol. Lett. 21(5), 322–324 (2009).
    [Crossref]
  11. G.-W. Lu, and T. Miyazaki, “Optical phase Add/Drop for format conversion between DQPSK and DPSK,”in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMO1.
  12. G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express 17(16), 13346–13353 (2009).
    [Crossref] [PubMed]
  13. G. W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundström, M. Karlsson, and P. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol. 29(16), 2460–2466 (2011).
    [Crossref]
  14. G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
    [Crossref] [PubMed]
  15. Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
    [Crossref]
  16. P. Zhu, J. Li, Y. Chen, Y. Xu, N. Zhang, B. Guo, Z. Chen, and Y. He, “Demonstration of 1-to-13 PDM-8 QAM SCFDM superchannel multicasting in HNLF,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper Th1D.2.
  17. O. F. Yilmaz, S. R. Nuccio, S. Khaleghi, J.-Y. Yang, L. Christen, and A. E. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals intoa single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paperOThM4.
  18. A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically-poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
    [Crossref]
  19. Y. Xie, S. Gao, and S. He, “All-optical wavelength conversion and multicasting for polarization-multiplexed signal using angled pumps in a silicon waveguide,” Opt. Lett. 37(11), 1898–1900 (2012).
    [Crossref] [PubMed]
  20. B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh1C.5.
  21. B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
    [Crossref] [PubMed]
  22. G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
    [Crossref]
  23. G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
    [Crossref]
  24. D. Wang, T. H. Cheng, Y. K. Yeo, Z. Xu, Y. Wang, G. Xiao, and J. Liu, “Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity,” J. Lightwave Technol. 28(24), 3497–3505 (2010).
  25. M. A. Roelens, J. B. Schroeder, P. Blown, C. Pulikkaseril, S. Poole, and S. Frisken, “Applications of LCoS-based programmable optical processors,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper W4F.3.
    [Crossref]
  26. M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, and G. Charlet, “Mode division multiplexing of 2 × 100Gb/s channels using an LCOS basedspatial modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
    [Crossref]
  27. E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
    [Crossref] [PubMed]
  28. Y. Sakurai, M. Kawasugi, Y. Hotta, S. Khan, H. Oguri, K. Takeuchi, and N. Uehara, “LCOS-based 4x4 wavelength cross-connect switch for flexible channel management in ROADMs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM4.
    [Crossref]
  29. S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM3.
    [Crossref]
  30. B. Zou, Y. Yu, X. Huang, Z. Wu, W. Wu, and X. Zhang, “All-Optical Format Conversion for Multichannel QPSK Signals,” J. Lightwave Technol. 31(3), 375–384 (2013).
    [Crossref]
  31. Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
    [Crossref]
  32. C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
    [Crossref]
  33. X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009).
    [Crossref]
  34. H. Zhao, E. Agrell, and M. Karlsson, “Trellis-codedmodulation in PSKand DPSK communications,” in European Conference on Optical Communication, Göteborg, Sweden, 2006, paper We3.P.93.
  35. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express 15(13), 8444–8453 (2007).
    [Crossref] [PubMed]
  36. W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
    [Crossref]
  37. D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
    [Crossref]
  38. M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
    [Crossref]
  39. M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
    [Crossref] [PubMed]
  40. F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
    [Crossref] [PubMed]
  41. M. J. Power, R. P. Webb, and R. J. Manning, “All-optical phase discrimination using SOA,” Opt. Express 21(22), 25664–25669 (2013).
    [Crossref] [PubMed]
  42. F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
    [Crossref]

2014 (4)

2013 (7)

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

M. J. Power, R. P. Webb, and R. J. Manning, “All-optical phase discrimination using SOA,” Opt. Express 21(22), 25664–25669 (2013).
[Crossref] [PubMed]

B. Zou, Y. Yu, X. Huang, Z. Wu, W. Wu, and X. Zhang, “All-Optical Format Conversion for Multichannel QPSK Signals,” J. Lightwave Technol. 31(3), 375–384 (2013).
[Crossref]

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN,” Opt. Express 21(23), 28809–28816 (2013).
[Crossref] [PubMed]

A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically-poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
[Crossref]

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (5)

2010 (1)

2009 (5)

2008 (1)

2007 (1)

2006 (1)

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[Crossref]

2005 (1)

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

2004 (2)

W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Abedin, K. S.

Adams, R.

Ahlawat, M.

Andrekson, P.

Artal, P.

Astruc, M.

Bergman, K.

Berrettini, G.

Bigo, S.

Bogoni, A.

Bostani, A.

Boutin, A.

Brindel, P.

Calabretta, N.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

Chagnon, M.

Chan, C.-K.

W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
[Crossref]

Charlet, G.

Chen, L. R.

Chen, L.-K.

W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
[Crossref]

Chen, Z.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Cheng, T. H.

Chitgarha, M. R.

Ciaramella, E.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Contestabile, G.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Da Ros, F.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

Dalgaard, K.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

Deng, Y.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Fernández, E. J.

Filion, B.

Fok, M. P.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
[Crossref] [PubMed]

Fukuchi, Y.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

Gaeta, A. L.

Galili, M.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
[Crossref] [PubMed]

Gao, S.

Guo, Y.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

He, S.

Hu, H.

Huang, H.

Huang, X.

Hung, W.

W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
[Crossref]

Huo, L.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

Hvam, J. M.

Jeppesen, P.

Ji, H.

Karlsson, M.

Kashyap, R.

Kawanishi, T.

Khaleghi, S.

Kitagawa, S.

Koebele, C.

Kong, D.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Kwok, C. H.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[Crossref]

Larochelle, S.

Lau, R. K. W.

Lee, J. H.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Lei, L.

Li, J.

Li, Y.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Lin, C.

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[Crossref]

Lin, J.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Lipson, M.

Liu, J.

Lou, C.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

Lu, G. W.

Lu, G.-W.

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[Crossref] [PubMed]

G.-W. Lu and T. Miyazaki, “Optical phase add/drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” Photon. Technol. Lett. 21(5), 322–324 (2009).
[Crossref]

Lundström, C.

Luo, B.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Malacarne, A.

Malekiha, M.

Manning, R. J.

Mardoyan, H.

Maruta, A.

Meloni, G.

Menard, M.

Mishina, K.

Miyazaki, T.

Ng, W. C.

Nguyen, A. T.

Okawachi, Y.

Ophir, N.

Oxenløwe, L. K.

Padmaraju, K.

Pan, W.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Peucheret, C.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

Plant, D. V.

Potì, L.

Power, M. J.

Presi, M.

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

Prieto, P. M.

Provost, L.

Prucnal, P. R.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

M. P. Fok and P. R. Prucnal, “All-optical encryption based on interleaved waveband switching modulation for optical network security,” Opt. Lett. 34(9), 1315–1317 (2009).
[Crossref] [PubMed]

Pu, M.

Rusch, L. A.

Sakamoto, T.

Salem, R.

Salsi, M.

Sambo, N.

Sillard, P.

Spasojevic, M.

Sperti, D.

Tehranchi, A.

Tipsuwannakul, E.

Tran, P.

Verluise, F.

Wang, D.

Wang, H.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Wang, J.

Wang, Q.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

Wang, X.

Wang, Y.

Wang, Z.

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Webb, R. P.

Willner, A. E.

Wu, J.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Wu, W.

Wu, W. H.

Wu, Z.

Xiao, G.

Xie, Y.

Xing, Y.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

Xu, J.

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

Xu, Z.

Yan, L.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Yang, J.-Y.

Yeo, Y. K.

Yi, A.

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Yilmaz, O. F.

Yu, J.

Yu, Y.

Yvind, K.

Zhang, J.

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Zhang, X.

B. Zou, Y. Yu, X. Huang, Z. Wu, W. Wu, and X. Zhang, “All-Optical Format Conversion for Multichannel QPSK Signals,” J. Lightwave Technol. 31(3), 375–384 (2013).
[Crossref]

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Zhang, X. L.

Zhou, B.

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

Zhou, X.

Zhu, X.

Zou, B.

Zou, B. R.

J. Lightwave Technol. (7)

A. E. Willner, S. Khaleghi, M. R. Chitgarha, and O. F. Yilmaz, “All-optical signal processing,” J. Lightwave Technol. 32(4), 660–680 (2014).
[Crossref]

G. W. Lu, E. Tipsuwannakul, T. Miyazaki, C. Lundström, M. Karlsson, and P. Andrekson, “Format conversion of optical multilevel signals using FWM-based optical phase erasure,” J. Lightwave Technol. 29(16), 2460–2466 (2011).
[Crossref]

A. Malacarne, G. Meloni, G. Berrettini, N. Sambo, L. Potì, and A. Bogoni, “Optical multicasting of 16QAM signals in periodically-poled lithium niobate waveguide,” J. Lightwave Technol. 31(11), 1797–1803 (2013).
[Crossref]

M. Salsi, C. Koebele, D. Sperti, P. Tran, H. Mardoyan, P. Brindel, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, and G. Charlet, “Mode division multiplexing of 2 × 100Gb/s channels using an LCOS basedspatial modulator,” J. Lightwave Technol. 30(4), 618–623 (2012).
[Crossref]

D. Wang, T. H. Cheng, Y. K. Yeo, Z. Xu, Y. Wang, G. Xiao, and J. Liu, “Performance comparison of using SOA and HNLF as FWM medium in a wavelength multicasting scheme with reduced polarization sensitivity,” J. Lightwave Technol. 28(24), 3497–3505 (2010).

B. Zou, Y. Yu, X. Huang, Z. Wu, W. Wu, and X. Zhang, “All-Optical Format Conversion for Multichannel QPSK Signals,” J. Lightwave Technol. 31(3), 375–384 (2013).
[Crossref]

X. Zhou and J. Yu, “Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

C. H. Kwok and C. Lin, “Polarization-insensitive all-optical NRZ-to-RZ format conversion by spectral filtering of a cross phase modulation broadened signal spectrum,” J. Sel. Top. Quantum Electron. 12(3), 451–458 (2006).
[Crossref]

Opt. Express (14)

F. Da Ros, K. Dalgaard, L. Lei, J. Xu, and C. Peucheret, “QPSK-to-2×BPSK wavelength and modulation format conversion through phase-sensitive four-wave mixing in a highly nonlinear optical fiber,” Opt. Express 21(23), 28743–28750 (2013).
[Crossref] [PubMed]

M. J. Power, R. P. Webb, and R. J. Manning, “All-optical phase discrimination using SOA,” Opt. Express 21(22), 25664–25669 (2013).
[Crossref] [PubMed]

K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express 15(13), 8444–8453 (2007).
[Crossref] [PubMed]

E. J. Fernández, P. M. Prieto, and P. Artal, “Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator,” Opt. Express 17(13), 11013–11025 (2009).
[Crossref] [PubMed]

B. Filion, W. C. Ng, A. T. Nguyen, L. A. Rusch, and S. Larochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM and 5 Gbaud 64-QAM signals in a semiconductor optical amplifier,” Opt. Express 21(17), 19825–19833 (2013).
[Crossref] [PubMed]

G. W. Lu, K. S. Abedin, and T. Miyazaki, “DPSK multicast using multiple-pump FWM in Bismuths highly nonlinear fiber with high multicast efficiency,” Opt. Express 16(26), 21964–21970 (2008).
[Crossref] [PubMed]

J. Wang, H. Huang, X. Wang, J.-Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express 19(19), 18246–18252 (2011).
[Crossref] [PubMed]

G. W. Lu and T. Miyazaki, “Optical phase erasure based on FWM in HNLF enabling format conversion from 320-Gb/s RZDQPSK to 160-Gb/s RZ-DPSK,” Opt. Express 17(16), 13346–13353 (2009).
[Crossref] [PubMed]

R. Adams, M. Spasojevic, M. Chagnon, M. Malekiha, J. Li, D. V. Plant, and L. R. Chen, “Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire,” Opt. Express 22(4), 4083–4090 (2014).
[Crossref] [PubMed]

Y. Yu, B. R. Zou, W. H. Wu, and X. L. Zhang, “All-optical parallel NRZ-DPSK to RZ-DPSK format conversion at 40 Gb/s based on XPM effect in a single SOA,” Opt. Express 19(15), 14720–14725 (2011).
[Crossref] [PubMed]

M. Pu, H. Hu, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “One-to-six WDM multicasting of DPSK signals based on dual-pump four-wave mixing in a silicon waveguide,” Opt. Express 19(24), 24448–24453 (2011).
[Crossref] [PubMed]

G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
[Crossref] [PubMed]

M. Ahlawat, A. Bostani, A. Tehranchi, and R. Kashyap, “Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN,” Opt. Express 21(23), 28809–28816 (2013).
[Crossref] [PubMed]

N. Ophir, R. K. W. Lau, M. Menard, X. Zhu, K. Padmaraju, Y. Okawachi, R. Salem, M. Lipson, A. L. Gaeta, and K. Bergman, “Wavelength conversion and unicast of 10-Gb/s data spanning up to 700 nm using a silicon nanowaveguide,” Opt. Express 20(6), 6488–6495 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Photon. Technol. Lett. (8)

F. Da Ros, K. Dalgaard, Y. Fukuchi, J. Xu, M. Galili, and C. Peucheret, “Simultaneous QPSK-to-(2times) BPSK Wavelength and Modulation Format Conversion in PPLN,” Photon. Technol. Lett. 26(12), 1207–1210 (2014).
[Crossref]

G. Contestabile, M. Presi, and E. Ciaramella, “Multiple wavelength conversion for WDM multicasting by FWM in an SOA,” Photon. Technol. Lett. 16(7), 1775–1777 (2004).
[Crossref]

G. Contestabile, N. Calabretta, M. Presi, and E. Ciaramella, “Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization-switching in an SOA,” Photon. Technol. Lett. 17(12), 2652–2654 (2005).
[Crossref]

W. Hung, C.-K. Chan, and L.-K. Chen, “A novel optical packet labeling scheme using interleaved low-speed DPSK labels,” Photon. Technol. Lett. 16(2), 698–700 (2004).
[Crossref]

D. Kong, Y. Li, H. Wang, X. Zhang, J. Zhang, J. Wu, and J. Lin, “All-optical XOR gates for QPSK signals based on four-wave mixing in a semiconductor optical amplifier,” Photon. Technol. Lett. 24(12), 988–990 (2012).
[Crossref]

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Low-phase-noise clock recovery from NRZ signal and simultaneous NRZ-to-RZ format conversion,” Photon. Technol. Lett. 25(23), 2339–2341 (2013).
[Crossref]

G.-W. Lu and T. Miyazaki, “Optical phase add/drop for format conversion between DQPSK and DPSK and its application in optical label switching systems,” Photon. Technol. Lett. 21(5), 322–324 (2009).
[Crossref]

Z. Chen, L. Yan, W. Pan, B. Luo, A. Yi, Y. Guo, and J. H. Lee, “One-to-Nine multicasting of RZ-DPSK based on cascaded four-wave mixing in a highly nonlinear fiber without stimulated brillouin scattering suppression,” Photon. Technol. Lett. 24(20), 1882–1885 (2012).
[Crossref]

Trans. Inf. Forensics Security (1)

M. P. Fok, Z. Wang, Y. Deng, and P. R. Prucnal, “Optical layer security in fiber-optic networks,” Trans. Inf. Forensics Security 6(3), 725–736 (2011).
[Crossref]

Other (9)

M. A. Roelens, J. B. Schroeder, P. Blown, C. Pulikkaseril, S. Poole, and S. Frisken, “Applications of LCoS-based programmable optical processors,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper W4F.3.
[Crossref]

B. Filion, S. Amiralizadeh, A. T. Nguyen, L. A. Rusch, and S. LaRochelle, “Wideband wavelength conversion of 16 Gbaud 16-QAM signals in a semiconductor optical amplifier,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTh1C.5.

Y. Sakurai, M. Kawasugi, Y. Hotta, S. Khan, H. Oguri, K. Takeuchi, and N. Uehara, “LCOS-based 4x4 wavelength cross-connect switch for flexible channel management in ROADMs,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM4.
[Crossref]

S. Frisken, G. Baxter, D. Abakoumov, H. Zhou, I. Clarke, and S. Poole, “Flexible and grid-less wavelength selective switch using LCOS technology,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper OTuM3.
[Crossref]

P. Zhu, J. Li, Y. Chen, Y. Xu, N. Zhang, B. Guo, Z. Chen, and Y. He, “Demonstration of 1-to-13 PDM-8 QAM SCFDM superchannel multicasting in HNLF,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2014), paper Th1D.2.

O. F. Yilmaz, S. R. Nuccio, S. Khaleghi, J.-Y. Yang, L. Christen, and A. E. Willner, “Optical multiplexing of two 21.5 Gb/s DPSK signals intoa single 43 Gb/s DQPSK channel with simultaneous 7-fold multicasting in a single PPLN waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paperOThM4.

P. N. Ji, Y. Aono, and T. Wang, “Reconfigurable optical add/drop multiplexer based on bidirectional wavelength selective switches,” In Photonics in Switching, OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWB1.

G.-W. Lu, and T. Miyazaki, “Optical phase Add/Drop for format conversion between DQPSK and DPSK,”in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMO1.

H. Zhao, E. Agrell, and M. Karlsson, “Trellis-codedmodulation in PSKand DPSK communications,” in European Conference on Optical Communication, Göteborg, Sweden, 2006, paper We3.P.93.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Operation principle: (a) Simultaneous wavelength and format conversion for dual-channel DQPSK signals; (b) input DQPSK using serially-cascaded modulator; (c) input DQPSK using parallel IQ modulator; (d) one-to-six WDM multicast.
Fig. 2
Fig. 2 Multi-function optical switch unit based on bidirectional LCoS and SOA-loop architecture
Fig. 3
Fig. 3 Experiment setup: PC: polarization controller; OC: optical coupler; AWG: arbitrary waveform generator; EDFA: erbium-doped fiber amplifier; VOA: variable optical attenuator; BPF: band-pass filter; ODL: optical delay line; A/D: analog to digital converter; LO: local oscillation. Insets: the constellations and eye-diagrams of the original input signals before SOA for wavelength/format conversion and WDM multicast.
Fig. 4
Fig. 4 Optical spectra of wavelength and format conversion at the (a) input; (b) output of SOA (resolution: 0.02 nm).
Fig. 5
Fig. 5 Optical spectra of converted signals de-multiplexed by LCoS: (a) converted DQPSK2 at 1546.92nm; (b) converted DPSK1 at 1547.72 nm; (c) converted DQPSK1 at 1550.12 nm; (d) converted DPSK2 at 1554.12 nm (resolution: 0.02 nm)
Fig. 6
Fig. 6 Measured BER performance and corresponding constellations and eye-diagrams (measured at −35 dBm) of input signals (S1, S2) and converted signals (DPSK1, DPSK2, DQPSK1, DQPSK2).
Fig. 7
Fig. 7 Optical spectra of WDM multicast at the (a) input; (b) output of SOA (resolution: 0.02 nm).
Fig. 8
Fig. 8 Optical spectra of WDM multicast de-multiplexed by LCoS: (a) Ch1 at 1545.32 nm; (b) Ch2 at 1546.12 nm; (c) Ch3 at 1546.92 nm; (d) Ch4 at 1549.92 nm; (e) Ch5 at 1551.72 nm (f) Ch6 at 1552.52 nm (resolution: 0.02 nm).
Fig. 9
Fig. 9 Measured BER performance and corresponding constellations and eye-diagrams (measured at −35 dBm) of six WDM multicast signals

Tables (3)

Tables Icon

Table 1 Logic and phase mapping between input and output signals

Tables Icon

Table2 Summary of wavelength, frequency, conversion efficiency, OSNR, and power penalty

Tables Icon

Table3 Summary of wavelength, frequency, conversion efficiency, OSNR, and power penalty of six multicast signals.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 223 = k 223 A 2 2 A 3 exp[j(2 ω 2 ω 3 )t+(2 θ 2 θ 3 )]
E 112 = k 112 A 1 2 A 2 exp[j(2 ω 1 ω 2 )t+(2 θ 1 θ 2 )]
E 221 = k 221 A 2 2 A 1 exp[j(2 ω 2 ω 1 )t+(2 θ 2 θ 1 )]
E 332 = k 332 A 3 2 A 2 exp[j(2 ω 3 ω 2 )t+(2 θ 3 θ 2 )]

Metrics