Abstract

Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere

Xiankang Dou, Yuli Han, Dongsong Sun, Haiyun Xia, Zhifeng Shu, Ruocan Zhao, Mingjia Shangguan, and Jie Guo
Opt. Express 22(S5) A1203-A1221 (2014)

Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method

Haiyun Xia, Xiankang Dou, Dongsong Sun, Zhifeng Shu, Xianghui Xue, Yan Han, Dongdong Hu, Yuli Han, and Tingdi Cheng
Opt. Express 20(14) 15286-15300 (2012)

Gravity waves observation of wind field in stratosphere based on a Rayleigh Doppler lidar

Ruocan Zhao, Xiankang Dou, Dongsong Sun, Xianghui Xue, Jun Zheng, Yuli Han, Tingdi Chen, Guocheng Wang, and Yingjie Zhou
Opt. Express 24(6) A581-A591 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42, RG3003 (2004).
  2. A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
    [Crossref]
  3. M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
    [Crossref]
  4. A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
    [Crossref]
  5. M. P. Baldwin and T. J. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294(5542), 581–584 (2001).
    [Crossref] [PubMed]
  6. M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).
  7. V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
    [Crossref]
  8. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed (Springer, 2005).
  9. M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
    [Crossref]
  10. X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC, 2005).
  11. M. L. Chanin and A. Hauchecorne, “Lidar studies of temperature and density using Rayleigh scattering,” in International Council of Scientific Unions Middle Atmosphere Handbook (National Aeronautics and Space Administration, 1984).
  12. M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
    [Crossref]
  13. W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
    [Crossref]
  14. J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).
  15. O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
    [Crossref]
  16. T. Shibata, M. Kobuchi, and M. Maeda, “Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar,” Appl. Opt. 25(5), 685–688 (1986).
    [Crossref] [PubMed]
  17. J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
    [Crossref]
  18. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
    [Crossref] [PubMed]
  19. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
    [Crossref] [PubMed]
  20. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
    [Crossref] [PubMed]
  21. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
    [Crossref] [PubMed]
  22. E. Eloranta, “High spectral resolution lidar,” In Range-Resolved Optical Remote Sensing of the Atmosphere. C. Weitkamp, ed. (Springer, 2005).
  23. G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).
  24. B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39(7), 1972–1975 (2014).
    [Crossref] [PubMed]
  25. R. L. Schwiesow and L. Lading, “Temperature profiling by Rayleigh-scattering lidar,” Appl. Opt. 20(11), 1972–1979 (1981).
    [Crossref] [PubMed]
  26. H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22(9), 1373–1381 (1983).
    [Crossref] [PubMed]
  27. H. Shimizu, K. Noguchi, and C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25(9), 1460–1466 (1986).
    [Crossref] [PubMed]
  28. C C. Y. She, R. J. Alvarez, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles,” Opt. Lett. 17(7), 541–543 (1992).
    [Crossref] [PubMed]
  29. P. Piironen and E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19(3), 234–236 (1994).
    [Crossref] [PubMed]
  30. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
    [Crossref]
  31. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
    [Crossref] [PubMed]
  32. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere,” Appl. Opt. 44(7), 1305–1314 (2005).
    [Crossref] [PubMed]
  33. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44(7), 1315–1322 (2005).
    [Crossref] [PubMed]
  34. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
    [PubMed]
  35. Z. S. Liu, D. C. Bi, X. Q. Song, J. B. Xia, R. Z. Li, Z. J. Wang, and C. Y. She, “Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements,” Opt. Lett. 34(18), 2712–2714 (2009).
    [Crossref] [PubMed]
  36. Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
    [Crossref] [PubMed]
  37. D. Liu, Y. Yang, Z. Cheng, H. Huang, B. Zhang, T. Ling, and Y. Shen, “Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties,” Opt. Express 21(11), 13084–13093 (2013).
    [Crossref] [PubMed]
  38. Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
    [Crossref] [PubMed]
  39. A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
    [Crossref]
  40. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Adam Hilger, 1989), Appendix 6.
  41. R. H. Eather and D. L. Reasoner, “Spectrophotometry of faint light sources with a tilting-filter photometer,” Appl. Opt. 8(2), 227–242 (1969).
    [Crossref] [PubMed]
  42. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
    [Crossref] [PubMed]
  43. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
    [Crossref] [PubMed]
  44. B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
    [Crossref] [PubMed]
  45. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, 2007).
  46. E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
    [Crossref]
  47. N. Hagen, M. Kupinski, and E. L. Dereniak, “Gaussian profile estimation in one dimension,” Appl. Opt. 46(22), 5374–5383 (2007).
    [Crossref] [PubMed]
  48. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
    [Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (3)

2011 (3)

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
[Crossref]

2009 (2)

2008 (2)

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

2007 (3)

2005 (4)

2004 (4)

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
[Crossref]

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42, RG3003 (2004).

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

2003 (1)

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

2002 (1)

2001 (4)

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
[Crossref] [PubMed]

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

M. P. Baldwin and T. J. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294(5542), 581–584 (2001).
[Crossref] [PubMed]

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

2000 (1)

1999 (2)

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

1994 (1)

1992 (1)

1986 (2)

1983 (1)

1981 (1)

1971 (1)

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

1969 (1)

Alexander, M. J.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Alpers, M.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Althausen, D.

Alvarez, R. J.

Amiridis, V.

E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
[Crossref]

Angell, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Ansmann, A.

Arshinov, Y.

Baldwin, M. P.

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

M. P. Baldwin and T. J. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294(5542), 581–584 (2001).
[Crossref] [PubMed]

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Balis, D. S.

E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
[Crossref]

Barnett, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Baumgart, R.

Bazhenov, O. E.

O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
[Crossref]

Behrendt, A.

Beneditti-Michelangeli, G.

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

Bhattacharya, Y.

A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
[Crossref]

Bi, D. C.

Birner, T.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

Blanot, L.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Bobrovnikov, S.

Bourassa, A.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Burlakov, V. D.

O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
[Crossref]

Burrows, J. P.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Caldwell, L. M.

Chanin, M. L.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Chen, W. N.

W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
[Crossref]

Cheng, T.

Cheng, Z.

Chu, X.

Dabas, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Davidson, F. M.

Degenstein, D.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Dehn, A.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Denneulin, M.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Dereniak, E. L.

Deters, B.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Dikmelik, Y.

Dolfi-Bouteyre, A.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Dolgii, S. I.

O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
[Crossref]

Dong, J.

Dou, X.

Dunkerton, T. J.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

M. P. Baldwin and T. J. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294(5542), 581–584 (2001).
[Crossref] [PubMed]

Eather, R. H.

Eixmann, R.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Eloranta, E. W.

Fiocco, G. G.

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

Flamant, P.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Fricke-Begemann, C.

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Friedman, J. S.

Gaffen, D.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Garnier, A.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Gelman, M.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Gerding, M.

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Gerrard, A. J.

A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
[Crossref]

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42, RG3003 (2004).

Gettelman, A.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

Giannakaki, E.

E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
[Crossref]

Gillett, N. P.

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

Gray, L. J.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Hagen, N.

Hair, J. W.

Hamilton, K.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Han, Y.

Hardesty, R. M.

Harrell, S. D.

Hauchecorne, A.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Haynes, P. H.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Hegglin, M. I.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

Himmelmann, S.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Hirota, I.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Höffner, J.

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Holton, J. R.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Hoor, P.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

Horinouchi, T.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Hu, D.

Hua, D.

Huang, H.

Huang, W.

Jones, D. B. A.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Kazadzis, S.

E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
[Crossref]

Keckhut, P.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Kinnersley, J. S.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Kobayashi, T.

Kobuchi, M.

Koshelkov, Y.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Krueger, D. A.

Kupinski, M.

Labitzke, K.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Lading, L.

Lautenbach, J.

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

Lee, S. A.

Lemmerz, C.

Li, R. Z.

Lin, J. J. R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Ling, T.

Liu, D.

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Liu, Z. S.

Loth, C.

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Lübken, F.-J.

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

Luo, J.

Madonna, E.

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

Maeda, M.

Maischberger, K.

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

Marquardt, C.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Mattis, I.

Meriwether, J. W.

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42, RG3003 (2004).

Müller, D.

Nakamura, T.

Nash, J.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Nee, J. B.

W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
[Crossref]

Nevzorov, A. V.

O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
[Crossref]

Noguchi, K.

Norton, W. A.

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

O’Neill, A.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Onishi, M.

Orphal, J.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Pan, L. L.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

Pelon, J.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Piironen, P.

Pommereau, J. P.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Ramaswamy, V.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Randel, W.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Randel, W. J.

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Rauthe, M.

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

Reasoner, D. L.

Reichardt, J.

Reitebuch, O.

Richter, A.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Rood, R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Sato, K.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Schwiesow, R. L.

Serikov, I.

She, C C. Y.

She, C. Y.

Shen, F.

Shen, Y.

Shibata, T.

Shimizu, H.

Shine, K.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Shiotani, M.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Shu, Z.

Shuckburgh, E. F.

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

Song, X. Q.

Su, L.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Sun, D.

Swinbank, R.

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

Takahashi, M.

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Tan, B.

Thayer, J. P.

A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
[Crossref]

Thomason, L. W.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Thompson, D. W. J.

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

Trepte, C.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Tsao, C. C.

W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
[Crossref]

Tsuda, T.

Uchida, M.

Vargas, F.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Vernier, J. P.

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Voigt, S.

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Wandinger, U.

Wang, Z. J.

Wiig, J.

Williams, B. P.

Witschas, B.

Xia, H.

Xia, J. B.

Xue, X.

Yamashita, C.

Yang, L.

Yang, Y.

Yuan, T.

Yue, J.

Zhang, B.

Appl. Opt. (18)

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39(9), 1372–1378 (2000).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41(36), 7657–7666 (2002).
[Crossref] [PubMed]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43(14), 2930–2939 (2004).
[Crossref] [PubMed]

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer,” Appl. Opt. 44(17), 3593–3603 (2005).
[Crossref] [PubMed]

T. Shibata, M. Kobuchi, and M. Maeda, “Measurements of density and temperature profiles in the middle atmosphere with a XeF lidar,” Appl. Opt. 25(5), 685–688 (1986).
[Crossref] [PubMed]

R. L. Schwiesow and L. Lading, “Temperature profiling by Rayleigh-scattering lidar,” Appl. Opt. 20(11), 1972–1979 (1981).
[Crossref] [PubMed]

H. Shimizu, S. A. Lee, and C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22(9), 1373–1381 (1983).
[Crossref] [PubMed]

H. Shimizu, K. Noguchi, and C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25(9), 1460–1466 (1986).
[Crossref] [PubMed]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, “High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles,” Appl. Opt. 40(30), 5280–5294 (2001).
[Crossref] [PubMed]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere,” Appl. Opt. 44(7), 1305–1314 (2005).
[Crossref] [PubMed]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44(7), 1315–1322 (2005).
[Crossref] [PubMed]

Z. Cheng, D. Liu, Y. Yang, L. Yang, and H. Huang, “Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer,” Appl. Opt. 52(32), 7838–7850 (2013).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, L. Su, L. Yang, H. Huang, and Y. Shen, “Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties,” Appl. Opt. 53(20), 4386–4397 (2014).
[Crossref] [PubMed]

R. H. Eather and D. L. Reasoner, “Spectrophotometry of faint light sources with a tilting-filter photometer,” Appl. Opt. 8(2), 227–242 (1969).
[Crossref] [PubMed]

H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
[Crossref] [PubMed]

B. Witschas, C. Lemmerz, and O. Reitebuch, “Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere,” Appl. Opt. 51(25), 6207–6219 (2012).
[Crossref] [PubMed]

N. Hagen, M. Kupinski, and E. L. Dereniak, “Gaussian profile estimation in one dimension,” Appl. Opt. 46(22), 5374–5383 (2007).
[Crossref] [PubMed]

Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44(23), 4946–4952 (2005).
[Crossref] [PubMed]

Atmos. Chem. Phys. (4)

E. Giannakaki, D. S. Balis, V. Amiridis, and S. Kazadzis, “Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station,” Atmos. Chem. Phys. 7(21), 5519–5530 (2007).
[Crossref]

M. Gerding, J. Höffner, J. Lautenbach, M. Rauthe, and F.-J. Lübken, “Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54° N observed by lidar,” Atmos. Chem. Phys. 8(24), 7465–7482 (2008).
[Crossref]

A. J. Gerrard, Y. Bhattacharya, and J. P. Thayer, “Observations of in-situ generated gravity waves during a stratospheric temperature enhancement (STE) event,” Atmos. Chem. Phys. 11(22), 11913–11917 (2011).
[Crossref]

M. Alpers, R. Eixmann, C. Fricke-Begemann, M. Gerding, and J. Höffner, “Temperature lidar measurements from 1 to 105 km altitude using resonance, Rayleigh, and Rotational Raman scattering,” Atmos. Chem. Phys. 4(3), 793–800 (2004).
[Crossref]

Geophys. Res. Lett. (1)

J. P. Vernier, L. W. Thomason, J. P. Pommereau, A. Bourassa, J. Pelon, A. Garnier, A. Hauchecorne, L. Blanot, C. Trepte, D. Degenstein, and F. Vargas, “Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade,” Geophys. Res. Lett. 38, L12807 (2011).

Int. J. Opt. (1)

O. E. Bazhenov, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5° N; 85.0° E) in volcanic activity period 2006-2011,” Int. J. Opt. 2012, 1–10 (2012).
[Crossref]

J. Atmos. Sol.-Terr. Phys. (1)

W. N. Chen, C. C. Tsao, and J. B. Nee, “Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere,” J. Atmos. Sol.-Terr. Phys. 66(1), 39–49 (2004).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. P. Burrows, A. Richter, A. Dehn, B. Deters, S. Himmelmann, S. Voigt, and J. Orphal, “Atmospheric remote sensing reference data from GOME: Part 2. Temperature-dependent absorption cross-sections of O3 in the 231 −794 nm range,” J. Quant. Spectrosc. Radiat. Transfer 61(4), 509–517 (1999).
[Crossref]

Nature (1)

G. G. Fiocco, G. Beneditti-Michelangeli, K. Maischberger, and E. Madonna, “Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar,” Nature 229, 78–79 (1971).

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Rev. Geophys. (4)

V. Ramaswamy, M. L. Chanin, J. Angell, J. Barnett, D. Gaffen, M. Gelman, P. Keckhut, Y. Koshelkov, K. Labitzke, J. J. R. Lin, A. O’Neill, J. Nash, W. Randel, R. Rood, K. Shine, M. Shiotani, and R. Swinbank, “Stratospheric temperature trends: Observations and model simulations,” Rev. Geophys. 39(1), 71–122 (2001).
[Crossref]

J. W. Meriwether and A. J. Gerrard, “Mesosphere inversion layers and stratosphere temperature enhancements,” Rev. Geophys. 42, RG3003 (2004).

A. Gettelman, P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, “The extratropical upper troposphere and lower stratosphere,” Rev. Geophys. 49(3), RG3003 (2011).
[Crossref]

M. P. Baldwin, L. J. Gray, T. J. Dunkerton, K. Hamilton, P. H. Haynes, W. J. Randel, J. R. Holton, M. J. Alexander, I. Hirota, T. Horinouchi, D. B. A. Jones, J. S. Kinnersley, C. Marquardt, K. Sato, and M. Takahashi, “The quasi-biennial oscillation,” Rev. Geophys. 39(2), 179–229 (2001).
[Crossref]

Science (2)

M. P. Baldwin and T. J. Dunkerton, “Stratospheric harbingers of anomalous weather regimes,” Science 294(5542), 581–584 (2001).
[Crossref] [PubMed]

M. P. Baldwin, D. W. J. Thompson, E. F. Shuckburgh, W. A. Norton, and N. P. Gillett, “Weather from the stratosphere?” Science 301(5631), 317–319 (2003).

Tellus, Ser. A, Dyn. Meterol. Oceanogr. (1)

A. Dabas, M. Denneulin, P. Flamant, C. Loth, A. Garnier, and A. Dolfi-Bouteyre, “Correcting winds measured with a Rayleigh Doppler lidar from pressure and temperature effects,” Tellus, Ser. A, Dyn. Meterol. Oceanogr. 60(2), 206–215 (2008).
[Crossref]

Other (6)

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Adam Hilger, 1989), Appendix 6.

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed (Springer, 2005).

X. Chu and G. C. Papen, “Resonance fluorescence lidar,” in Laser Remote Sensing, T. Fujii and T. Fukuchi, eds. (CRC, 2005).

M. L. Chanin and A. Hauchecorne, “Lidar studies of temperature and density using Rayleigh scattering,” in International Council of Scientific Unions Middle Atmosphere Handbook (National Aeronautics and Space Administration, 1984).

E. Eloranta, “High spectral resolution lidar,” In Range-Resolved Optical Remote Sensing of the Atmosphere. C. Weitkamp, ed. (Springer, 2005).

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Principle of the HSRL technique for temperature detection. The transmission lines of Mie backscatter (black dot) and Rayleigh backscatter (lines) are plotted for temperature ranging from 150 K (blue) to 350 K (red). An example of the mixture spectrum of Mie backscatter and Rayleigh backscatter at 200 K is also shown.
Fig. 2
Fig. 2 A bird’s-eye view of the HSRL temperature lidar and the Rayleigh Doppler wind lidar in experiment (left), and the 3-D perspective view of the two lidars (right).
Fig. 3
Fig. 3 Schematic setup of the HSRL Lidar with system-level optical frequency control, and interior view of the compact receiver (inset, lower right corner).
Fig. 4
Fig. 4 Effect of the frequency drift of the laser (top) on the transmission measurement (bottom) during the fast (left) and slow (right) cavity scanning. Raw data are shown in dot lines, and the frequency-compensated transmission curves are in solid lines. Labels are the FSR (before, after) the compensation.
Fig. 5
Fig. 5 Photon counts of transmitted backscatter through the left and right FPI channels during the scanning. Height resolution is 1 km (blue) below 30 km, and it is 2 km above 30 km (claret).
Fig. 6
Fig. 6 (a): Measured transmission curves of the backscatter (from 18 km) through the two channels (circle) and their best fit results (dash line), (b): Residual between the measured transmissions and the fit results, (c): Profiles of transmitted backscatter along altitude at given frequencies labeled in (a).
Fig. 7
Fig. 7 (left): Temperature profiles derived from HSRL (dot), radiosonde (dash line) and RI lidar (solid line). (middle): Temperature difference between HSRL and RI lidar (circle) and difference between HSRL and radiosonde (dash line). (right) Profile of backscatter ratio.
Fig. 8
Fig. 8 Profiles of wind speed and direction derived from Doppler lidar (solid line) and radiosonde (circle).

Tables (1)

Tables Icon

Table 1 Key parameters of the mobile Rayleigh Doppler Lidar

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

h( ν )= T p ( 1 R e ) 2 1+R e 2 2 R e cos( 2πμνcosθ / Δ ν FSR ) ,
T p = [ 1A/ ( 1 R e ) ] 2 ,
h( ν )= T p ( 1 R e 1+ R e )[ 1+2 R e cos( 2πνcosθ / Δ ν FSR ) R e 2 1+ R e 2 2 R e cos( 2πνcosθ / Δ ν FSR ) ] = T M { 1+2e[ R e cos( 2πνcosθ / Δ ν FSR ) R e 2 +i R e sin( 2πνcosθ / Δ ν FSR ) 1+ R e 2 2 R e cos( 2πνcosθ / Δ ν FSR ) ] } = T M { 1+2e[ R e exp( i 2πνcosθ / Δ ν FSR ) 1 R e exp( i 2πνcosθ / Δ ν FSR ) 1 R e exp( i 2πνcosθ / Δ ν FSR ) 1 R e exp( i 2πνcosθ / Δ ν FSR ) ] } = T M { 1+2e[ R e exp( i 2πνcosθ / Δ ν FSR ) 1 R e exp( i 2πνcosθ / Δ ν FSR ) ] },
h( ν )= T M { 1+2e[ n=1 + ( R e exp( i 2πνcosθ / Δ ν FSR ) ) n ] } = T M { 1+2 n=1 + R e n cos( 2πnνcosθ / Δ ν FSR ) }.
H( ν )= 2 θ 0 2 0 θ 0 h( ν )sinθdθ = 2 θ 0 2 0 θ 0 T M [ 1+2 n=1 + R e n cos( 2πnνcosθ / Δ ν FSR ) ]d( cosθ ) = T M 2 θ 0 2 [ cosθ2 n=1 + R e n Δ ν FSR 2πnν sin( 2πnνcosθ / Δ ν FSR ) ]| θ 0 0 = T M 2 θ 0 2 { 1cos θ 0 2 n=1 + R e n Δ ν FSR 2πnν [ sin( 2πnνcos θ 0 / Δ ν FSR )sin( 2πnν / Δ ν FSR ) ] }.
φ 2 sin 2 φ=( 1cos2φ )/2, φ1,
sinαsinβ=2cos α+β 2 sin αβ 2 ,
H( ν ) T M 2 θ 0 2 { θ 0 2 2 +2 n=1 + R e n Δ ν FSR 2πnν 2cos( 2πnν Δ ν FSR 1+cos θ 0 2 )sin( 2πnν Δ ν FSR 1cos θ 0 2 ) } = T M { 1+2 n=1 + R e n cos( 2πnν Δ ν FSR 1+cos θ 0 2 )sinc( 2nν Δ ν FSR 1cos θ 0 2 ) }.
H( ν )= T M { 1+2 n=1 + R e n cos( 2πnν Δ ν FSR 1+cos θ 0 2 )sinc( 2n ν 0 Δ ν FSR 1cos θ 0 2 ) } = T M { 1+2 n=1 + R e n cos( nkν )sinc( n φ 0 ) },
I M ( ν ) I L ( ν )= ( π Δ ν L ) 1 exp( ν 2 / Δ ν L 2 ),
I R ( ν )= ( π Δ ν R ) 1 exp( ν 2 / Δ ν R 2 ).
T M ( ν )=H( ν ) I M ( ν )H( ν ) I L ( ν ) T M { 1+2 n=1 + R e n [ cos( nkν ) I L ( ν ) ]sinc( n φ 0 ) }.
T M ( ν )= T M { 1+2 n=1 + R e n [ + 1 π Δ ν L exp( x 2 Δ ν L 2 )cos[ nk( νx ) ]dx ]sinc( n φ 0 ) } = T M { 1+2 n=1 + R e n e[ + 1 π Δ ν L exp( x 2 Δ ν L 2 )exp[ ink( νx ) ]dx ]sinc( n φ 0 ) } = T M { 1+2 n=1 + R e n e[ 1 π Δ ν L exp( inkν ) + exp( x 2 Δ ν L 2 inkx )dx ]sinc( n φ 0 ) } = T M { 1+2 n=1 + R e n e[ exp( inkν )exp( n 2 k 2 Δ ν L 2 4 ) ]sinc( n φ 0 ) } = T M { 1+2 n=1 + R e n cos( nkν )exp( n 2 k 2 Δ ν L 2 4 )sinc( n φ 0 ) }.
I D ( ν )= ( π Δ ν D ) 1 exp( ν 2 / Δ ν D 2 ),
T M ( ν )= T M { 1+2 n=1 + R e n cos( nkν )exp[ n 2 k 2 ( Δ ν L 2 +Δ ν D 2 ) /4 ]sinc( n φ 0 ) }.
T R ( ν )= T M { 1+2 n=1 + R e n cos( nkν )exp[ n 2 k 2 ( Δ ν L 2 +Δ ν D 2 +Δ ν R 2 ) /4 ]sinc( n φ 0 ) }.
N T ( ν,R )= E L η o η q hν A 0 R 2 ξ( R )[ β R T R ( ν )+ β M T M ( ν ) ] c τ d 2 exp[ 2 0 R κ ( ν,R )dR ],
N E ( ν,R )= E L η o η q hν A 0 R 2 ξ( R )[ β R + β M ] c τ d 2 exp[ 2 0 R κ ( ν,R )dR ].
Q( ν,R )= N T ( ν,R ) N E ( ν,R ) =ζ T R ( ν )+( 1ζ ) T M ( ν ).
Δν /ν = Δl /l ,
σ(Δ ν F )=Δ ν F /2 N ,
σ( T a )= m λ 2 Δ ν R Δ ν F / 4k N .

Metrics