Abstract

We report an open-cavity optical fiber Fabry-Pérot interferometer (FPI) capable of measuring refractive index with very low temperature cross-sensitivity. The FPI was constructed by splicing a thin piece of C-shaped fiber between two standard single-mode fibers. The refractive index (RI) response of the FPI was characterized using water-ethanol mixtures with RI in the range of 1.33 to 1.36. The RI sensitivity was measured to be 1368 nm/RIU at the wavelength of 1600 nm with good linearity. Thanks to its all-glass structure, the FPI exhibits very low temperature cross-sensitivity of 3.04 × 10−7 RIU/°C. The effects of cavity length on the performance of the sensor were also studied. A shorter cavity gives rise to broader measurement range while offering larger detection limit, and vice versa. What’s more, the effect of material dispersion of analyte on the sensitivity of open-cavity FPIs was identified for the first time. The sensor is compact in size and easy to fabricate. It is potentially useful for label-free optical sensing of chemical and biological samples.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fast response Fabry–Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber

Jiajun Tian, Zejin Lu, Mingran Quan, Yuzhu Jiao, and Yong Yao
Opt. Express 24(18) 20132-20142 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  2. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
    [Crossref] [PubMed]
  3. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  4. J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
    [Crossref] [PubMed]
  5. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
    [Crossref] [PubMed]
  6. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  7. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Pérot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuat. A-Phys. 148, 33 (2008).
  8. D. Wu, T. Zhu, G. Y. Wang, J. Y. Fu, X. G. Lin, and G. L. Gou, “Intrinsic fiber-optic Fabry-Perot interferometer based on arc discharge and single-mode fiber,” Appl. Opt. 52(12), 2670–2675 (2013).
    [Crossref] [PubMed]
  9. J. L. Elster, M. E. Jones, M. K. Evans, S. M. Lenahan, C. A. Boyce, W. H. Velander, and R. VanTassell, “Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors,” in BiOS 2000 the International Symposium on Biomedical Optics, Proc. SPIE 3911, 105–112 (2000).
  10. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
    [Crossref]
  11. G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).
  12. L. Coelho, P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, D. Viegas, K. Schuster, J. Kobelke, and O. Frazão, “Simultaneous measurement of partial pressure of O2 and CO2 with a hybrid interferometer,” Opt. Lett. 37(15), 3063–3065 (2012).
    [Crossref] [PubMed]
  13. J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
    [Crossref] [PubMed]
  14. D. W. Duan, Y. J. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry–Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B 29(5), 912–915 (2012).
    [Crossref]
  15. X. Chen, F. Shen, Z. Wang, Z. Huang, and A. Wang, “Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [Crossref] [PubMed]
  16. D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
    [Crossref] [PubMed]
  17. S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
    [Crossref] [PubMed]
  18. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
    [Crossref] [PubMed]
  19. Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
    [Crossref] [PubMed]
  20. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
    [Crossref] [PubMed]
  21. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [Crossref] [PubMed]
  22. Z. L. Ran, Y. J. Rao, J. Zhang, Z. W. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [Crossref]
  23. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  24. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref] [PubMed]
  25. M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
    [Crossref]
  26. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  27. W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
    [Crossref] [PubMed]
  28. C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
    [Crossref] [PubMed]
  29. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]
  30. A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
    [Crossref]

2014 (1)

2013 (4)

2012 (4)

2011 (3)

2010 (1)

2009 (2)

2008 (5)

2007 (2)

2006 (5)

2005 (1)

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Araujo, L.

Bang, O.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Barton, J. S.

Bouwmans, G.

Braune, T.

Chen, L.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Chen, X.

Cheng, G. H.

Chiang, K. S.

Choi, E. S.

Choi, H. Y.

Coelho, L.

Cooper, K. L.

Coviello, G.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Deng, H. Y.

Deng, M.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Pérot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuat. A-Phys. 148, 33 (2008).

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Donlagic, D.

Duan, D. W.

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Fan, X.

Favero, F. C.

Feng, J.

Finazzi, V.

Frazão, O.

Fu, H. Y.

Fu, J. Y.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Gander, M. J.

Gou, G. L.

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Guan, B. O.

Han, M.

Han, Y.

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Hu, T. Y.

Huang, Z.

Jones, J. D. C.

Jorge, P. A. S.

Klotzbuecher, T.

Kobelke, J.

Kou, J. L.

Lee, B. H.

Li, Y.

Liao, C. R.

Liao, X.

Lin, X. G.

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Liu, D. M.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Liu, W. J.

Liu, Z.

Liu, Z. W.

Lu, C.

Lu, P.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Lu, Y.

Lu, Y. Q.

MacPherson, W. N.

Ott, J.

Paek, U. C.

Park, K. S.

Park, S. J.

Petersen, D. H.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Pevec, S.

Pruneri, V.

Qureshi, K. K.

Ran, Z. L.

Rao, Y. J.

Santos, J. L.

Savenko, A.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Schmitz, F.

Schuster, K.

Sengers, J. M. H. L.

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Shen, F.

Sun, F. G.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Tafulo, P. A. R.

Tam, H. Y.

Tian, J.

Tian, M.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Tsai, H. L.

Tse, M. L. V.

Viegas, D.

Villatoro, J.

Wang, A.

Wang, D. N.

Wang, F.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Wang, G. Y.

Wang, X.

Wang, Z.

Watson, S.

Wei, T.

White, I. M.

Wu, C.

Wu, D.

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Xiao, H.

Xu, B.

Xu, F.

Xu, J.

Yang, M. H.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Yang, X. C.

Ye, L.

Yuan, W.

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Zhang, J.

Zhang, Q.

Zhang, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Zhu, T.

Zhu, Y.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry–Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photon. Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. L. Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Opt. Express (9)

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
[Crossref] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[Crossref] [PubMed]

Y. J. Rao, M. Deng, D. W. Duan, X. C. Yang, T. Zhu, and G. H. Cheng, “Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser,” Opt. Express 15(21), 14123–14128 (2007).
[Crossref] [PubMed]

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express 16(3), 2252–2263 (2008).
[Crossref] [PubMed]

S. Pevec and D. Donlagic, “High resolution, all-fiber, micro-machined sensor for simultaneous measurement of refractive index and temperature,” Opt. Express 22(13), 16241–16253 (2014).
[Crossref] [PubMed]

J. Tian, Y. Lu, Q. Zhang, and M. Han, “Microfluidic refractive index sensor based on an all-silica in-line Fabry-Perot interferometer fabricated with microstructured fibers,” Opt. Express 21(5), 6633–6639 (2013).
[Crossref] [PubMed]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112–7118 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lett. (8)

X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
[Crossref] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

J. Villatoro, V. Finazzi, G. Coviello, and V. Pruneri, “Photonic-crystal-fiber-enabled micro-Fabry-Perot interferometer,” Opt. Lett. 34(16), 2441–2443 (2009).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

L. Coelho, P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, D. Viegas, K. Schuster, J. Kobelke, and O. Frazão, “Simultaneous measurement of partial pressure of O2 and CO2 with a hybrid interferometer,” Opt. Lett. 37(15), 3063–3065 (2012).
[Crossref] [PubMed]

D. Donlagic, “All-fiber micromachined microcell,” Opt. Lett. 36(16), 3148–3150 (2011).
[Crossref] [PubMed]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[Crossref] [PubMed]

C. Wu, M. L. V. Tse, Z. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer,” Opt. Lett. 38(17), 3283–3286 (2013).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

W. Yuan, F. Wang, A. Savenko, D. H. Petersen, and O. Bang, “Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor,” Rev. Sci. Instrum. 82(7), 076103 (2011).
[Crossref] [PubMed]

Sens. Actuat. A-Phys. (2)

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry–Pérot interferometer sensor,” Sens. Actuat. A-Phys. 118, 117 (2005).

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry–Pérot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuat. A-Phys. 148, 33 (2008).

Other (1)

J. L. Elster, M. E. Jones, M. K. Evans, S. M. Lenahan, C. A. Boyce, W. H. Velander, and R. VanTassell, “Optical fiber extrinsic Fabry-Perot interferometric (EFPI)-based biosensors,” in BiOS 2000 the International Symposium on Biomedical Optics, Proc. SPIE 3911, 105–112 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Fabrication process of the C-FPI. (a) Scanning electronic microscope (SEM) photo of the cross section of the C-shaped fiber. (b) Side-view of fusion splicing the C-shaped fiber and the SMF. (c) Side-view of the SMF with a thin piece of C-shaped fiber fused spliced to it. (d) Side-view of the fabricated open-cavity C-FPI.
Fig. 2
Fig. 2 Schematic of the experimental setup for characterization of the liquid refractive index response of the C-FPI.
Fig. 3
Fig. 3 Interference spectra measured in air of the C-FPIs with increasing cavity lengths. (a) L = 9.4 μm. (b) L = 13.8 μm. (c) L = 20.3 μm. (d) L = 33.5 μm.
Fig. 4
Fig. 4 Experimental results of refractive index response of two C-FPIs. (a) & (b) Spectral shifts with respect to increasing liquid refractive index for L = 13.8 μm and L = 20.3 μm, respectively. (c) & (d) Dip wavelengths as functions of liquid refractive index for L = 13.8 μm and L = 20.3 μm, respectively.
Fig. 5
Fig. 5 Temperature response of a C-FPI.
Fig. 6
Fig. 6 (a) Spectral shift of a C-FPI immerged in DI water at different temperatures. (b) Dip wavelength as a function of RI of DI water at 589.3 nm. (c) Dip wavelength as a function of RI of DI water at 1520 nm.

Tables (2)

Tables Icon

Table 1 Performance comparison of two C-FPIs with different cavity lengths.

Tables Icon

Table 2 RI sensitivities of open-cavity FPIs calibrated using different kinds of analyte

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I(λ)= I 1 + I 2 +2 I 1 I 2 cos( 4π n m L λ + φ o ),
FSR λ 1 λ 2 2 n m L .
n m λ( n m ) 4πL+ φ o =(2k+1)π.
1 λ( n m ) n m λ 2 ( n m ) dλ( n m ) d n m =0.
S= dλ( n m ) d n m = λ( n m ) n m .
Δλ Δ n 589nm = Δ n 1550nm Δ n 589nm Δλ Δ n 1550nm =Γ λ n 1550nm

Metrics