Abstract

We report the design of dielectric-filled anti-reflection coated (ARC) two-dimensional (2D) metallic photonic crystals (MPhCs) capable of omnidirectional, polarization insensitive, wavelength selective emission/absorption. Using non-linear global optimization methods, optimized hafnium oxide (HfO2)-filled ARC 2D Tantalum (Ta) PhC designs exhibiting up to 26% improvement in emittance/absorptance at wavelengths λ below a cutoff wavelength λc over the unfilled 2D TaPhCs are demonstrated. The optimized designs possess high hemispherically average emittance/absorptance εH of 0.86 at λ < λc and low εH of 0.12 at λ > λc.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
    [CrossRef]
  2. C. E. Kennedy and H. Price, “Progress in Development of High-Temperature Solar-Selective Coating,” in International Solar Energy Conference (ASME, 2005), pp. 749–755.
    [CrossRef]
  3. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
    [CrossRef] [PubMed]
  4. M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
    [CrossRef]
  5. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
    [CrossRef] [PubMed]
  6. I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  7. A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
    [CrossRef]
  8. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
    [CrossRef]
  9. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
    [CrossRef]
  10. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  11. Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
    [CrossRef]
  12. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
    [CrossRef]
  13. T. A. Walsh, J. A. Burr, Y.-S. Kim, T.-M. Lu, and S.-Y. Lin, “High-temperature metal coating for modification of photonic band edge position,” J. Opt. Soc. Am. B 26, 1450–1455 (2009).
    [CrossRef]
  14. S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
    [CrossRef] [PubMed]
  15. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
    [CrossRef]
  16. B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
    [CrossRef]
  17. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
    [CrossRef]
  18. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [CrossRef] [PubMed]
  19. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
    [CrossRef]
  20. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
    [CrossRef] [PubMed]
  21. V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
    [CrossRef]
  22. V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
    [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  24. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [CrossRef] [PubMed]
  25. S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
    [CrossRef]
  26. M. J. D. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, 1994).
  27. W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
    [CrossRef]
  28. S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .
  29. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
    [CrossRef]
  30. H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
    [CrossRef]
  31. F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
    [CrossRef]
  32. H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
    [CrossRef]
  33. F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
    [CrossRef]
  34. T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
    [CrossRef]

2014 (1)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[CrossRef]

2013 (5)

2012 (1)

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[CrossRef]

2011 (3)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

2010 (4)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

2007 (1)

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

2005 (3)

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

2004 (1)

M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
[CrossRef]

2003 (2)

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

2002 (2)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

2000 (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

1983 (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[CrossRef]

1979 (1)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[CrossRef]

Abdelsalam, M.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Agrawal, M.

Akiyama, S.

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Alarcón-Padilla, D. C.

M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
[CrossRef]

Araghchini, M.

Bartlett, P. N.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Bathurst, S.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Bermel, P.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Blanco, M. J.

M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
[CrossRef]

Bläsi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Bohne, W.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Borisov, A. G.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Burr, J. A.

Cárabe, J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Celanovic, I.

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[CrossRef]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Chan, W.

Chan, W. R.

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Chou, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Chou, J. B.

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Depoy, D. M.

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Fan, S.

Fleming, J. G.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Fourspring, P. M.

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

Gandía, J. J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

García de Abajo, F. J.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Geil, R. D.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Ghebrebrhan, M.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

Giessen, H.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Gratrix, E. J.

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Greffet, J.-J.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Hamam, R.

Han, S. E.

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jensen, K. F.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

Joannopoulos, J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

Joannopoulos, J. D.

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[CrossRef]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Jovanovic, N.

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Kassakian, J.

I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Kennedy, C. E.

C. E. Kennedy and H. Price, “Progress in Development of High-Temperature Solar-Selective Coating,” in International Solar Energy Conference (ASME, 2005), pp. 749–755.
[CrossRef]

Kim, S.-G.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
[CrossRef]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Kim, Y.-S.

Kucherenko, S.

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Lazo-Wasem, J. E.

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

Lee, H.-J.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Lenert, A.

Lin, S. Y.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Lin, S.-Y.

Liu, N.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, V.

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[CrossRef]

Lu, T.-M.

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Mártil, I.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Martín, J. G.

M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
[CrossRef]

Martínez, F. L.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Marton, C. H.

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Ndao, S.

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

Norris, D. J.

O’Sullivan, F.

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Perreault, D.

I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Peumans, P.

Philipp, H. R.

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[CrossRef]

Pincon, O.

Powell, M. J. D.

M. J. D. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, 1994).

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Price, H.

C. E. Kennedy and H. Price, “Progress in Development of High-Temperature Solar-Selective Coating,” in International Solar Energy Conference (ASME, 2005), pp. 749–755.
[CrossRef]

Price, W. L.

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[CrossRef]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

Rahmlow, T. D.

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

Rephaeli, E.

Rinnerbauer, V.

Röhrich, J.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Saka, N.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Senkevich, J. J.

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

Sergeant, N. P.

Smyth, K.

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Soljacic, M.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
[CrossRef]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

Strub, E.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Sugawara, Y.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Sytsko, Y.

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

Teperik, T. V.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Tittl, A.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

Toledano-Luque, M.

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

Wada, K.

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

Walsh, T. A.

Wang, E. N.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

Yeng, Y. X.

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[CrossRef]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
[CrossRef]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

Zhang, Z. M.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[CrossRef]

Zhao, B.

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[CrossRef]

Appl. Phys. Lett. (4)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81, 4685–4687 (2002).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82, 1685–1687 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380–382 (2003).
[CrossRef]

H.-J. Lee, K. Smyth, S. Bathurst, J. Chou, M. Ghebrebrhan, J. Joannopoulos, N. Saka, and S.-G. Kim, “Hafnia-plugged microcavities for thermal stability of selective emitters,” Appl. Phys. Lett. 102, 241904 (2013).
[CrossRef]

Comp. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comp. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Comput. Optim. Appl. (1)

S. Kucherenko and Y. Sytsko, “Application of deterministic low-discrepancy sequences in global optimization,” Comput. Optim. Appl. 30, 297–318 (2005).
[CrossRef]

Comput. Phys. Comm. (1)

V. Liu and S. Fan, “A free electromagnetic solver for layered periodic structures,” Comput. Phys. Comm. 183, 2233–2244 (2012).
[CrossRef]

J. Appl. Phys. (2)

H. R. Philipp, “The infrared optical properties of SiO2 and SiO2 layers on silicon,” J. Appl. Phys. 50, 1053–1057 (1979).
[CrossRef]

F. O’Sullivan, I. Čelanović, N. Jovanović, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97, 033529 (2005).
[CrossRef]

J. Mod. Opt. (1)

A. Heinzel, V. Boerner, A. Gombert, B. Bläsi, V. Wittwer, and J. Luther, “Radiation filters and emitters for the NIR based on periodically structured metal surfaces,” J. Mod. Opt. 47, 2399–2419 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Optim. Theory Appl. (1)

W. L. Price, “Global optimization by controlled random search,” J. Optim. Theory Appl. 40, 333–348 (1983).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

F. L. Martínez, M. Toledano-Luque, J. J. Gandía, J. Cárabe, W. Bohne, J. Röhrich, E. Strub, and I. Mártil, “Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering,” J. Phys. D: Appl. Phys. 40, 5256–5265 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

B. Zhao and Z. M. Zhang, “Study of magnetic polaritons in deep gratings for thermal emission control,” J. Quant. Spectrosc. Radiat. Transfer 135, 81–89 (2014).
[CrossRef]

J. Vac. Sci. Technol. B (1)

V. Rinnerbauer, S. Ndao, Y. X. Yeng, J. J. Senkevich, K. F. Jensen, J. D. Joannopoulos, M. Soljačić, I. Čelanović, and R. D. Geil, “Large-area fabrication of high aspect ratio tantalum photonic crystals for high-temperature selective emitters,” J. Vac. Sci. Technol. B 31, 011802 (2013).
[CrossRef]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10, 2342–2348 (2010).
[CrossRef] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing,” Nano Lett. 11, 4366–4369 (2011).
[CrossRef] [PubMed]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002).
[CrossRef] [PubMed]

Nature Photonics (1)

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nature Photonics 2, 299–301 (2008).
[CrossRef]

Opt. Express (7)

E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
[CrossRef] [PubMed]

N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
[CrossRef]

S. E. Han and D. J. Norris, “Beaming thermal emission from hot metallic bull’s eyes,” Opt. Express 18, 4829–4837 (2010).
[CrossRef] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljačić, J. D. Joannopoulos, S. G. Johnson, and I. Čelanović, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[CrossRef] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[CrossRef] [PubMed]

Y. X. Yeng, W. R. Chan, V. Rinnerbauer, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems,” Opt. Express 21, A1035–A1051 (2013).
[CrossRef]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Čelanović, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22, A144–A154 (2013).
[CrossRef]

Phys. Rev. A (1)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, J. D. Joannopoulos, M. Soljačić, and I. Čelanović, “Tailoring thermal emission via Q-matching of photonic crystal resonances,” Phys. Rev. A 83, 033810 (2011).
[CrossRef]

Phys. Rev. B (1)

I. Čelanović, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. Joannopoulos, M. Soljačić, and I. Čelanović, “Enabling high temperature nanophotonics for energy applications,” Proc. Natl. Acad. Sci. USA 109, 2280–2285 (2011).
[CrossRef]

Solar Energy (1)

M. J. Blanco, J. G. Martín, and D. C. Alarcón-Padilla, “Theoretical efficiencies of angular-selective non-concentrating solar thermal systems,” Solar Energy 76, 683–691 (2004).
[CrossRef]

Other (4)

C. E. Kennedy and H. Price, “Progress in Development of High-Temperature Solar-Selective Coating,” in International Solar Energy Conference (ASME, 2005), pp. 749–755.
[CrossRef]

M. J. D. Powell, Advances in Optimization and Numerical Analysis (Kluwer Academic, 1994).

T. D. Rahmlow, J. E. Lazo-Wasem, E. J. Gratrix, P. M. Fourspring, and D. M. Depoy, “New performance levels for TPV front surface filters,” in 6th Thermophotovoltaic Generation of Electricity Conference (AIP, 2004), pp. 180–188.
[CrossRef]

S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-initio.mit.edu/nlopt .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Emittance ε as a function of wavelength λ and polar angle θ averaged over azimuthal angle ϕ and over all polarizations for optimized (a) 2D TaPhC (r = 0.53 μm, d = 8.50 μm, a = 1.16 μm) and (b) HfO2-filled ARC 2D TaPhC (r = 0.23 μm, d = 4.31 μm, a = 0.57 μm, t = 78 nm). Both are optimized for λc = 2.00 μm. HfO2 is depicted by the cyancoloured areas in the inset, and εH is the hemispherically averaged emittance. Contour plots of ε(λ, θ) are also shown for optimized (c) 2D TaPhC and (d) HfO2-filled ARC 2D TaPhC. White lines indicate the diffraction thresholds as defined by Eq. (2).

Fig. 2
Fig. 2

Optimized HfO2-filled ARC coated 2D TaPhC designs for λc = 1.70 μm (Design I: r = 0.19 μm, d = 3.62 μm, a = 0.49 μm, t = 63 nm), λc = 2.00 μm (Design II: r = 0.23 μm, d = 4.31 μm, a = 0.57 μm, t = 78 nm), and λc = 2.30 μm (Design III: r = 0.27 μm, d = 5.28 μm, a = 0.64 μm, t = 80 nm). ε is ε(λ, θ = 0°).

Fig. 3
Fig. 3

Comparison between optimized HfO2-filled (n ≈ 1.9) and SiO2-filled (n ≈ 1.45) ARC 2D TaPhCs for λc = 2.00 μm. Similar performance is obtained, albeit at a penalty of larger r, d, a, and t when using dielectrics with smaller n as shown in Table 1.

Tables (2)

Tables Icon

Table 1 Relevant dimensions of the dielectric-filled ARC 2D TaPhCs optimized for λc = 2.00 μm using different dielectric material choices.

Tables Icon

Table 2 Comparison of ηTPV and Jelec between a greybody emitter (ε = 0.9), optimized unfilled 2D TaPhC (r = 0.57 μm, d = 4.00 μm, a = 1.23 μm), and optimized HfO2-filled ARC 2D TaPhC (r = 0.22 μm, d = 0.75 μm, a = 0.73 μm, t = 146 nm) in InGaAsSb thermophotovoltaic (TPV) systems at T = 1250 K and view factor F = 0.99 (achievable with 100 mm × 100 mm flat plate geometry with emitter-TPV cell separation of 500 μm) with or without a cold-side filter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a ( sin θ i + sin θ m ) = m λ , m = ± 1 , ± 2 , ± 3 ,
θ d = sin 1 ( λ a 1 )
FOM = x η TPV + ( 1 x ) J elec PhC J elec BB

Metrics