Abstract

A new approach for the near-infrared (NIR) ocean reflectance correction in atmospheric correction for satellite ocean color data processing in coastal and inland waters is proposed, which combines the advantages of the three existing NIR ocean reflectance correction algorithms, i.e., Bailey et al. (2010) [Opt. Express 18, 7521 (2010) Appl. Opt. 39, 897 (2000) Opt. Express 20, 741 (2012)], and is named BMW. The normalized water-leaving radiance spectra nLw(λ) obtained from this new NIR-based atmospheric correction approach are evaluated against those obtained from the shortwave infrared (SWIR)-based atmospheric correction algorithm, as well as those from some existing NIR atmospheric correction algorithms based on several case studies. The scenes selected for case studies are obtained from two different satellite ocean color sensors, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP), with an emphasis on several turbid water regions in the world. The new approach has shown to produce nLw(λ) spectra most consistent with the SWIR results among all NIR algorithms. Furthermore, validations against the in situ measurements also show that in less turbid water regions the new approach produces reasonable and similar results comparable to the current operational algorithm. In addition, by combining the new NIR atmospheric correction with the SWIR-based approach, the new NIR-SWIR atmospheric correction can produce further improved ocean color products. The new NIR atmospheric correction can be implemented in a global operational satellite ocean color data processing system.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).
  2. A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
    [CrossRef] [PubMed]
  3. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
    [CrossRef] [PubMed]
  4. M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
    [CrossRef] [PubMed]
  5. H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
    [CrossRef] [PubMed]
  6. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
    [CrossRef] [PubMed]
  7. H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
    [CrossRef] [PubMed]
  8. H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
    [CrossRef] [PubMed]
  9. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
    [CrossRef]
  10. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
    [CrossRef]
  11. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
    [CrossRef]
  12. M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
    [CrossRef]
  13. P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22(23), 3751–3758 (1983).
    [CrossRef] [PubMed]
  14. R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
    [CrossRef]
  15. H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
    [CrossRef] [PubMed]
  16. K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
    [CrossRef]
  17. C. Cox and W. Munk, “Measurements of the roughness of the sea surface from photographs of the sun's glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954).
    [CrossRef]
  18. M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
    [CrossRef] [PubMed]
  19. H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
    [CrossRef]
  20. S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1485–1495 (2011).
    [CrossRef]
  21. H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).
    [CrossRef] [PubMed]
  22. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
    [CrossRef] [PubMed]
  23. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
    [CrossRef] [PubMed]
  24. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), pp. 51–59.
  25. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
    [CrossRef]
  26. S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
    [CrossRef] [PubMed]
  27. M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
    [CrossRef] [PubMed]
  28. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
    [CrossRef]
  29. C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
    [CrossRef]
  30. F. S. Patt, R. A. Barnes, J. R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 74pp, 2003).
  31. M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
    [CrossRef]
  32. W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr. 104, 30–45 (2012).
    [CrossRef]
  33. W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
    [CrossRef]
  34. J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
    [CrossRef]
  35. M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
    [CrossRef]
  36. M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
    [CrossRef] [PubMed]
  37. D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
    [CrossRef]
  38. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. I. Validation of red and near infra-red marine reflectance relationships,” Opt. Express 21(18), 21162–21175 (2013).
    [CrossRef] [PubMed]
  39. C. Goyens, C. Jamet, and K. G. Ruddick, “Spectral relationships for atmospheric correction. II. Improving NASA’s standard and MUMM near infra-red modeling schemes,” Opt. Express 21(18), 21176–21187 (2013).
    [CrossRef] [PubMed]
  40. K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
    [CrossRef]
  41. G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
    [CrossRef]
  42. M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
    [CrossRef]
  43. M. Wang, “Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method,” Int. J. Remote Sens. 25(18), 3637–3650 (2004).
    [CrossRef]
  44. M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
    [CrossRef]
  45. M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens. 44(11), 3196–3205 (2006).
    [CrossRef]
  46. S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
    [CrossRef]
  47. L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
    [CrossRef] [PubMed]
  48. C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
    [CrossRef]
  49. M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
    [CrossRef]
  50. M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
    [CrossRef]
  51. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
    [CrossRef] [PubMed]
  52. M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
    [CrossRef]
  53. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
    [CrossRef] [PubMed]
  54. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
    [CrossRef]
  55. M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens. 50(9), 3280–3292 (2012).
    [CrossRef]
  56. M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
    [CrossRef] [PubMed]
  57. M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens. 47(8), 2510–2518 (2009).
    [CrossRef]
  58. D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
    [CrossRef]
  59. S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ. 123, 163–174 (2012).
    [CrossRef]
  60. W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
    [CrossRef]
  61. M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
    [CrossRef]
  62. W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
    [CrossRef]
  63. E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
    [CrossRef]
  64. P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
    [CrossRef]
  65. IOCCG, Mission Requirements for Future Ocean-Colour Sensors, C. R. McClain and G. Meister (Eds.), Reports of International Ocean-Colour Coordinating Group, No. 13, IOCCG, Dartmouth, Canada (2012).

2014 (2)

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[CrossRef]

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

2013 (5)

2012 (6)

W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr. 104, 30–45 (2012).
[CrossRef]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[CrossRef] [PubMed]

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens. 50(9), 3280–3292 (2012).
[CrossRef]

S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ. 123, 163–174 (2012).
[CrossRef]

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

2011 (4)

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1485–1495 (2011).
[CrossRef]

2010 (2)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[CrossRef]

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

2009 (4)

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens. 47(8), 2510–2518 (2009).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

2007 (3)

2006 (4)

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[CrossRef] [PubMed]

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens. 44(11), 3196–3205 (2006).
[CrossRef]

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

2005 (5)

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[CrossRef] [PubMed]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

2004 (2)

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[CrossRef]

M. Wang, “Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method,” Int. J. Remote Sens. 25(18), 3637–3650 (2004).
[CrossRef]

2003 (1)

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

2002 (2)

2001 (1)

2000 (5)

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[CrossRef] [PubMed]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[CrossRef]

C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

1999 (2)

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

1998 (1)

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

1997 (2)

1996 (2)

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

1994 (3)

1992 (1)

1989 (1)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

1988 (1)

1983 (1)

1954 (1)

Ackerman, S. A.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Ahn, J. H.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Babin, M.

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

Bailey, S. W.

Barnes, W. L.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

Belanger, S.

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

Brown, J. W.

Carder, K. L.

C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

Choi, J. K.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Cox, C.

De Cauwer, V.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Deschamps, P. Y.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22(23), 3751–3758 (1983).
[CrossRef] [PubMed]

Doron, M.

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

Doxaran, D.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

Eom, J.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Evans, R. H.

Feldman, G. C.

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[CrossRef]

Foujols, T.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Franz, B. A.

Frey, R. A.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Frouin, R.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

Gentili, B.

Gillotay, D.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Gordon, H. R.

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[CrossRef] [PubMed]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
[CrossRef] [PubMed]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[CrossRef]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

Goyens, C.

Gumley, L. E.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Harding, J. L. W.

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

Herman, M.

Herse, M.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Hooker, S. B.

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[CrossRef]

Hu, C.

C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

Isaacman, A.

Jamet, C.

Jiang, L.

Knaeps, E.

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

Knobelspiesse, K. D.

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

Labs, D.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Lamquin, N.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

Li, X.

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

Lim, H. S.

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Liu, X.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

Mandel, H.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Maritorena, S.

Maymon, P. W.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

Mazeran, C.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

McClain, C. R.

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[CrossRef]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[CrossRef] [PubMed]

Menzel, W. P.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Moeller, C. C.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Montgomery, H. E.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

Moore, G.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Moore, K. D.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

Morel, A.

Muller-Karger, F.

C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

Munk, W.

Ostrow, H.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

Ovidio, F.

Paerl, H. W.

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

Park, Y. J.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Park, Y.-J.

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Peetermans, W.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Pichel, W. G.

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

Poteau, A.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

Ramachandran, S.

S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1485–1495 (2011).
[CrossRef]

Rausch, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

Raymaekers, D.

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

Rijkeboer, M.

Robinson, W.

Ruddick, K. G.

Ryu, J. H.

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

Salomonson, V. V.

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

Schwindling, M.

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

Scope, J. A.

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

Shi, W.

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[CrossRef]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens. 50(9), 3280–3292 (2012).
[CrossRef]

W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr. 104, 30–45 (2012).
[CrossRef]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[CrossRef] [PubMed]

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens. 47(8), 2510–2518 (2009).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[CrossRef] [PubMed]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens. 44(11), 3196–3205 (2006).
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

Siegel, D. A.

Simon, P. C.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Son, S.

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ. 123, 163–174 (2012).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

Sterckx, S.

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

Strabala, K. I.

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

Stumpf, R. P.

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

Tan, L.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

Tang, J.

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

Tanre, D.

Thuillier, G.

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Togliatti, A. I.

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

Voss, K.

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

Voss, K. J.

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

Wang, M.

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[CrossRef]

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

M. Wang, J. H. Ahn, L. Jiang, W. Shi, S. Son, Y. J. Park, and J. H. Ryu, “Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI),” Opt. Express 21(3), 3835–3849 (2013).
[CrossRef] [PubMed]

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
[CrossRef] [PubMed]

W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr. 104, 30–45 (2012).
[CrossRef]

M. Wang, W. Shi, and L. Jiang, “Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region,” Opt. Express 20(2), 741–753 (2012).
[CrossRef] [PubMed]

S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ. 123, 163–174 (2012).
[CrossRef]

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens. 50(9), 3280–3292 (2012).
[CrossRef]

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1485–1495 (2011).
[CrossRef]

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[CrossRef]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens. 47(8), 2510–2518 (2009).
[CrossRef]

M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007).
[CrossRef] [PubMed]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[CrossRef] [PubMed]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens. 44(11), 3196–3205 (2006).
[CrossRef]

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

M. Wang, “Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method,” Int. J. Remote Sens. 25(18), 3637–3650 (2004).
[CrossRef]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[CrossRef] [PubMed]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[CrossRef]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[CrossRef]

H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[CrossRef] [PubMed]

Werdell, P. J.

S. W. Bailey, B. A. Franz, and P. J. Werdell, “Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing,” Opt. Express 18(7), 7521–7527 (2010).
[CrossRef] [PubMed]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Woodruff, D. L.

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

Yang, H.

Zhang, H.

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[CrossRef]

Appl. Opt. (16)

A. Morel and B. Gentili, “Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem,” Appl. Opt. 35(24), 4850–4862 (1996).
[CrossRef] [PubMed]

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44(2), 241–248 (2005).
[CrossRef] [PubMed]

M. Wang, “Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance,” Appl. Opt. 45(17), 4122–4128 (2006).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994).
[CrossRef] [PubMed]

M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007).
[CrossRef] [PubMed]

H. R. Gordon, J. W. Brown, and R. H. Evans, “Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner,” Appl. Opt. 27(5), 862–871 (1988).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Surface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component,” Appl. Opt. 31(21), 4247–4260 (1992).
[CrossRef] [PubMed]

P. Y. Deschamps, M. Herman, and D. Tanre, “Modeling of the atmospheric effects and its application to the remote sensing of ocean color,” Appl. Opt. 22(23), 3751–3758 (1983).
[CrossRef] [PubMed]

H. R. Gordon and M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994).
[CrossRef] [PubMed]

M. Wang and S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001).
[CrossRef] [PubMed]

H. Yang and H. R. Gordon, “Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance,” Appl. Opt. 36(30), 7887–7897 (1997).
[CrossRef] [PubMed]

D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000).
[CrossRef] [PubMed]

K. G. Ruddick, F. Ovidio, and M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000).
[CrossRef] [PubMed]

L. Jiang and M. Wang, “Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing,” Appl. Opt. 52(27), 6757–6770 (2013).
[CrossRef] [PubMed]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, “Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: a comparison study,” Appl. Opt. 41(6), 974–990 (2002).
[CrossRef] [PubMed]

M. Wang, “Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing,” Appl. Opt. 45(35), 8951–8963 (2006).
[CrossRef] [PubMed]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

C. R. McClain, G. C. Feldman, and S. B. Hooker, “An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series,” Deep Sea Res. Part II Top. Stud. Oceanogr. 51(1-3), 5–42 (2004).
[CrossRef]

Geophys. Res. Lett. (2)

M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:.
[CrossRef]

M. Wang, J. Tang, and W. Shi, “MODIS-derived ocean color products along the China east coastal region,” Geophys. Res. Lett. 34(6), L06611 (2007), doi:.
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (6)

V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, “MODIS: advanced facility instrument for studies of the Earth as a system,” IEEE Trans. Geosci. Rem. Sens. 27(2), 145–153 (1989).
[CrossRef]

S. Ramachandran and M. Wang, “Near-real-time ocean color data processing using ancillary data from the Global Forecast System model,” IEEE Trans. Geosci. Rem. Sens. 49(4), 1485–1495 (2011).
[CrossRef]

M. Wang and W. Shi, “Detection of ice and mixed ice-water pixels for MODIS ocean color data processing,” IEEE Trans. Geosci. Rem. Sens. 47(8), 2510–2518 (2009).
[CrossRef]

M. Wang and W. Shi, “Sensor noise effects of the SWIR bands on MODIS-derived ocean color products,” IEEE Trans. Geosci. Rem. Sens. 50(9), 3280–3292 (2012).
[CrossRef]

M. Wang and B. A. Franz, “Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS,” IEEE Trans. Geosci. Rem. Sens. 38(1), 184–197 (2000).
[CrossRef]

M. Wang and W. Shi, “Cloud masking for ocean color data processing in the coastal regions,” IEEE Trans. Geosci. Rem. Sens. 44(11), 3196–3205 (2006).
[CrossRef]

Int. J. Remote Sens. (3)

M. Wang, “Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon vs multiple-scattering epsilon method,” Int. J. Remote Sens. 25(18), 3637–3650 (2004).
[CrossRef]

M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: Accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002).
[CrossRef]

M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005).
[CrossRef]

J. Geophys. Res. (7)

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102(D14), 17081–17106 (1997).
[CrossRef]

M. Wang, K. D. Knobelspiesse, and C. R. McClain, “Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products,” J. Geophys. Res. 110(D10), D10S06 (2005), doi:.
[CrossRef]

K. D. Moore, K. J. Voss, and H. R. Gordon, “Spectral reflectance of whitecaps: Their contribution to water-leaving radiance,” J. Geophys. Res. 105(C3), 6493–6499 (2000).
[CrossRef]

R. Frouin, M. Schwindling, and P. Y. Deschamps, “Spectral reflectance of sea foam in the visible and near infrared: In situ measurements and remote sensing implications,” J. Geophys. Res. 101(C6), 14361–14371 (1996).
[CrossRef]

J. K. Choi, Y. J. Park, J. H. Ahn, H. S. Lim, J. Eom, and J. H. Ryu, “GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity,” J. Geophys. Res. 117(C9), C09004 (2012), doi:.
[CrossRef]

M. Wang, S. Son, and J. L. W. Harding., “Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications,” J. Geophys. Res. 114(C10), C10011 (2009), doi:.
[CrossRef]

S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, “Discriminating clear sky from clouds with MODIS,” J. Geophys. Res. 103(D24), 32141–32157 (1998).
[CrossRef]

J. Geophys. Res. Atmos. (1)

M. Wang, X. Liu, L. Tan, L. Jiang, S. Son, W. Shi, K. Rausch, and K. Voss, “Impact of VIIRS SDR performance on ocean color products,” J. Geophys. Res. Atmos. 118, 10347–10360 (2013), doi:.
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

H. Zhang and M. Wang, “Evaluation of sun glint models using MODIS measurements,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 492–506 (2010).
[CrossRef]

Limnol. Oceanogr. (2)

W. Shi and M. Wang, “Ocean reflectance spectra at the red, near-infrared, and shortwave infrared from highly turbid waters: A study in the Bohai Sea, Yellow Sea, and East China Sea,” Limnol. Oceanogr. 59(2), 427–444 (2014).
[CrossRef]

K. G. Ruddick, V. De Cauwer, Y.-J. Park, and G. Moore, “Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters,” Limnol. Oceanogr. 51(2), 1167–1179 (2006).
[CrossRef]

Opt. Express (6)

Prog. Oceanogr. (1)

W. Shi and M. Wang, “Satellite views of the Bohai Sea, Yellow Sea, and East China Sea,” Prog. Oceanogr. 104, 30–45 (2012).
[CrossRef]

Remote Sens. Environ. (13)

D. Doxaran, N. Lamquin, Y. J. Park, C. Mazeran, J. H. Ryu, M. Wang, and A. Poteau, “Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data,” Remote Sens. Environ. 146, 36–48 (2014).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithm using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009).
[CrossRef]

M. Doron, S. Belanger, D. Doxaran, and M. Babin, “Spectral variations in the near-infrared ocean reflectance,” Remote Sens. Environ. 115(7), 1617–1631 (2011).
[CrossRef]

C. Hu, K. L. Carder, and F. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000).
[CrossRef]

M. Wang, “A sensitivity study of SeaWiFS atmospheric correction algorithm: Effects of spectral band variations,” Remote Sens. Environ. 67(3), 348–359 (1999).
[CrossRef]

M. Wang and H. R. Gordon, “A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS,” Remote Sens. Environ. 50(3), 231–239 (1994).
[CrossRef]

D. L. Woodruff, R. P. Stumpf, J. A. Scope, and H. W. Paerl, “Remote estimation of water clarity in optically complex estuarine waters,” Remote Sens. Environ. 68(1), 41–52 (1999).
[CrossRef]

S. Son and M. Wang, “Water properties in Chesapeake Bay from MODIS-Aqua measurements,” Remote Sens. Environ. 123, 163–174 (2012).
[CrossRef]

W. Shi and M. Wang, “An assessment of the black ocean pixel assumption for MODIS SWIR bands,” Remote Sens. Environ. 113(8), 1587–1597 (2009).
[CrossRef]

M. Wang, W. Shi, and J. Tang, “Water property monitoring and assessment for China's inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011).
[CrossRef]

W. Shi, M. Wang, X. Li, and W. G. Pichel, “Ocean sand ridge signatures in the Bohai Sea observed by satellite ocean color and synthetic aperture radar measurements,” Remote Sens. Environ. 115(8), 1926–1934 (2011).
[CrossRef]

E. Knaeps, A. I. Togliatti, D. Raymaekers, K. G. Ruddick, and S. Sterckx, “In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary,” Remote Sens. Environ. 120, 133–144 (2012).
[CrossRef]

P. J. Werdell and S. W. Bailey, “An improved in-situ bio-optical data set for ocean color algorithm development and satellite data product validation,” Remote Sens. Environ. 98(1), 122–140 (2005).
[CrossRef]

Sol. Phys. (1)

G. Thuillier, M. Herse, D. Labs, T. Foujols, W. Peetermans, D. Gillotay, P. C. Simon, and H. Mandel, “The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions,” Sol. Phys. 214(1), 1–22 (2003).
[CrossRef]

Other (4)

IOCCG, Mission Requirements for Future Ocean-Colour Sensors, C. R. McClain and G. Meister (Eds.), Reports of International Ocean-Colour Coordinating Group, No. 13, IOCCG, Dartmouth, Canada (2012).

F. S. Patt, R. A. Barnes, J. R. E. Eplee, B. A. Franz, W. D. Robinson, G. C. Feldman, S. W. Bailey, J. Gales, P. J. Werdell, M. Wang, R. Frouin, R. P. Stumpf, R. A. Arnone, J. R. W. Gould, P. M. Martinolich, V. Ransibrahmanakul, J. E. O'Reilly, and J. A. Yoder, “Algorithm updates for the fourth SeaWiFS data reprocessing,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 74pp, 2003).

R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, “A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters,” (NASA Goddard Space Flight Center, Greenbelt, Maryland, 2003), pp. 51–59.

IOCCG, Atmospheric Correction for Remotely-Sensed Ocean-Colour Products, M. Wang (Ed.), Reports of International Ocean-Color Coordinating Group, No. 10, IOCCG, Dartmouth, Canada (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Flowchart describing the BMW algorithm.

Fig. 2
Fig. 2

Satellite-measured true color images for various case study regions with station locations indicated in pink crosses for (a) a portion of the U.S. East Coast from MODIS-Aqua acquired on April 5, 2004, (b) the La Plata River estuary from MODIS-Aqua acquired on March 30, 2006, (c) the La Plata River estuary from VIIRS-SNPP acquired on March 23, 2014, (d) a portion of the East China Sea from MODIS-Aqua acquired on October 19, 2003, and (e) a portion of the East China Sea from VIIRS-SNPP acquired on October 15, 2012.

Fig. 3
Fig. 3

Comparisons of MODIS-Aqua-derived nLw(λ) images at wavelengths of 443, 551, and 667 nm (blue, green, and red) corresponding to the case in Fig. 2(a) from the six atmospheric correction algorithms including the SWIR (panels (a), (g), and (m)), Stumpf (panels (b), (h), and (n)), Bailey (panels (c), (i), and (o)), Wang (panels (d), (j), and (p)), BMW (panels (e), (k), and (q)), and NIR-SWIR (panels (f), (l), and (r)). The NIR-SWIR algorithm uses BMW as the NIR component.

Fig. 4
Fig. 4

Comparisons of MODIS-Aqua-derived nLw(λ) spectra as a function of wavelength for the five atmospheric correction algorithms (SWIR, BMW, Stumpf, Bailey, and Wang) for specific locations marked in Fig. 2(a) of (a) a1, (b) a2, and (c) a3. Plot (d) shows scatter plot of MODIS-Aqua-derived nLw(λ) at wavelengths of 412, 443, 488, 531, 555, 645, and 859 nm from the BMW algorithm against those from the SWIR algorithm, randomly sampled from the entire MODIS granule corresponding to the coverage in Fig. 2(a).

Fig. 5
Fig. 5

Comparisons of MODIS-Aqua-derived nLw(λ) images at wavelengths of 443, 555, 645, and 859 nm (blue, green, red, and NIR) corresponding to the case in Fig. 2(b) from the four atmospheric correction algorithms including the SWIR (panels (a), (e), (i), and (m)), Bailey (panels (b), (f), (j), and (n)), BMW (panels (c), (g), (k), and (o)), and NIR-SWIR (panels (d), (h), (l), and (p)). The NIR-SWIR algorithm uses BMW as the NIR component.

Fig. 6
Fig. 6

Comparisons of MODIS and VIIRS-derived nLw(λ) spectra as a function of wavelength for the four atmospheric correction algorithms (SWIR, BMW, Bailey, and Wang) for specific locations marked in Figs. 2(b) and 2(c) of (a) b1, (b) b2, and (c) c1. Plot (d) shows scatter plot of MODIS-Aqua-derived nLw(λ) at wavelengths of 412, 443, 488, 531, 555, 645, and 859 nm from the BMW against those from the SWIR algorithm, randomly sampled from the entire MODIS granule corresponding to the coverage in Fig. 2(b).

Fig. 7
Fig. 7

Comparisons of MODIS and VIIRS-derived nLw(λ) images at four selected bands at the blue, green, red, and NIR (443, 555, 645, and 859 nm for MODIS and 443, 551, 671, and 862 nm for VIIRS) from the SWIR and BMW atmospheric correction algorithms, corresponding to the cases in Figs. 2(d) and 2(e). The first (SWIR) and second (BMW) columns are MODIS nLw(λ) results corresponding to the MODIS true color image in Fig. 2(d), while the third (SWIR) and fourth (BMW) columns are VIIRS nLw(λ) results corresponding to the VIIRS true color image in Fig. 2(e).

Fig. 8
Fig. 8

Comparisons of MODIS and VIIRS-derived nLw(λ) spectra as a function of wavelength for the four atmospheric correction algorithms (SWIR, BMW, Bailey, and Wang) for specific locations marked in Figs. 2(d) and 2(e) of (a) d1, (b) d2, and (c) e1. Plot (d) shows scatter plot of VIIRS-derived nLw(λ) at wavelengths of 410, 443, 486, 551, 671, and 862 nm from the BMW against those from the SWIR algorithm, randomly sampled from the entire VIIRS granule corresponding to the coverage in Fig. 2(e).

Tables (8)

Tables Icon

Table 1 Median ratios and differences between the NIR-derived and SWIR-derived nLw(λ) values from all valid pixels with nLw(869) > 0.05 mW cm–2 µm−1 sr–1 from the entire MODIS granule in Fig. 2(a).

Tables Icon

Table 2 Same as Table 1 except the values are from all valid pixels with nLw(862) > 0.05 mW cm–2 μm–1 sr–1 from the entire VIIRS granule acquired on December 14, 2012 at 18:10 UTC.

Tables Icon

Table 3 Same as Table 1 except for the case of MODIS-Aqua granule in Fig. 2(b).

Tables Icon

Table 4 Same as Table 1 except for the case of the MODIS-Aqua granule in Fig. 2(d).

Tables Icon

Table 5 Same as Table 2 except for the case of the VIIRS-SNPP granule in Fig. 2(e).

Tables Icon

Table 6 List of MODIS-Aqua granules included in the statistics results in Table 7.

Tables Icon

Table 7 Same as Table 3 except the pixels are from 30 MODIS cases listed in Table 6.

Tables Icon

Table 8 Matchup statistics including median/mean ratios and difference statistics between satellite-derived using four different atmospheric correction algorithms and in situ-measured nLw(λ) values.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L t ( C ) ( λ )= L A ( λ )+t( λ ) t 0 ( λ )cos θ 0 n L w ( λ ),
α( λ NIR1 , λ NIR2 )= ρ wN ( λ NIR1 ) / ρ wN ( λ NIR2 ) and
ε ( M ) ( λ NIR1 , λ NIR2 )= ρ A ( λ NIR1 ) / ρ A ( λ NIR2 ) ,
n L w ( λ NIR2 )=0.368n L w ( λ NIR1 )+0.04n L w ( λ NIR1 ) 2 .
ε ( M,Mean ) ( λ NIR1 , λ NIR2 )= i ε i ( M ) ( λ NIR1 , λ NIR2 ) 1 r i 2 +1 / i 1 r i 2 +1 ,

Metrics