Abstract

This work presents a new emission-based measurement which permits quantification of two-dimensional scalar distributions in laminar flames. A Michelson-based Fourier-transform spectrometer coupled to a mid-infrared camera (1.5 μm to 5.5 μm) obtained 256 × 128pixel hyperspectral flame images at high spectral (δν̃ = 0.75cm−1) and spatial (0.52 mm) resolutions. The measurements revealed line and band emission from H2O, CO2, and CO. Measurements were collected from a well-characterized partially-premixed ethylene (C2H4) flame produced on a Hencken burner at equivalence ratios, Φ, of 0.8, 0.9, 1.1, and 1.3. After describing the instrument and novel calibration methodology, analysis of the flames is presented. A single-layer, line-by-line radiative transfer model is used to retrieve path-averaged temperature, H2O, CO2 and CO column densities from emission spectra between 2.3 μm to 5.1 μm. The radiative transfer model uses line intensities from the latest HITEMP and CDSD-4000 spectroscopic databases. For the Φ = 1.1 flame, the spectrally estimated temperature for a single pixel 10 mm above burner center was T = (2318 ± 19)K, and agrees favorably with recently reported laser absorption measurements, T = (2348 ± 115)K, and a NASA CEA equilibrium calculation, T = 2389K. Near the base of the flame, absolute concentrations can be estimated, and H2O, CO2, and CO concentrations of (12.5 ± 1.7) %, (10.1 ± 1.0) %, and (3.8 ± 0.3) %, respectively, compared favorably with the corresponding CEA values of 12.8%, 9.9% and 4.1%. Spectrally-estimated temperatures and concentrations at the other equivalence ratios were in similar agreement with measurements and equilibrium calculations. 2-D temperature and species column density maps underscore the Φ-dependent chemical composition of the flames. The reported uncertainties are 95% confidence intervals and include both statistical fit errors and the propagation of systematic calibration errors using a Monte Carlo approach. Systematic errors could warrant a factor of two increase in reported uncertainties. This work helps to establish IFTS as a valuable combustion diagnostic tool.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kohse-Hoinghaus and J. B. Jeffries, eds. Applied Combustion Diagnostics (Taylor and Francis, 2002).
  2. P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
    [CrossRef]
  3. P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
    [CrossRef]
  4. D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
    [CrossRef]
  5. B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).
  6. K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
    [CrossRef]
  7. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602– 8613 (2009).
    [CrossRef] [PubMed]
  8. K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
    [CrossRef] [PubMed]
  9. J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
    [CrossRef] [PubMed]
  10. R. I. Acosta, K. C. Gross, G. P. Perram, S. Johnson, L. Dao, D. Medina, R. Roybal, and P. Black, “Gas phase plume from laser irradiated fiberglass reinforced polymers via imaging Fourier-transform spectroscopy,” Appl. Spectrosc. 68(7), 723–732 (2014).
    [CrossRef] [PubMed]
  11. M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
    [CrossRef]
  12. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
    [CrossRef]
  13. K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).
  14. V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).
  15. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
    [CrossRef]
  16. P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).
  17. L. Mertz, Transformations in Optics (Wiley-Interscience, 1965).
  18. D. B. Chase, “Phase correction in FT-IR,” Appl. Spectrosc. 36(3), 240–244 (1982).
    [CrossRef]
  19. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).
  20. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
    [CrossRef]
  21. S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).
    [CrossRef]
  22. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
    [CrossRef]
  23. S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” RP-1311, NASA (1996).
  24. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
    [CrossRef]
  25. S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
    [CrossRef]
  26. R. I. Acosta, “Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials,” Ph.D. dissertation, AFIT-ENP-DS-14-J-8, Air Force Institute of Technology (2014).

2014 (2)

2013 (1)

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).

2012 (2)

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

2011 (1)

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).
[CrossRef]

2010 (3)

K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
[CrossRef] [PubMed]

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

2009 (3)

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602– 8613 (2009).
[CrossRef] [PubMed]

2007 (1)

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

2006 (1)

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

2005 (1)

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

2002 (1)

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

1998 (1)

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

1991 (1)

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

1988 (2)

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

1982 (1)

Abrams, M. C.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Acosta, R. I.

R. I. Acosta, K. C. Gross, G. P. Perram, S. Johnson, L. Dao, D. Medina, R. Roybal, and P. Black, “Gas phase plume from laser irradiated fiberglass reinforced polymers via imaging Fourier-transform spectroscopy,” Appl. Spectrosc. 68(7), 723–732 (2014).
[CrossRef] [PubMed]

R. I. Acosta, “Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials,” Ph.D. dissertation, AFIT-ENP-DS-14-J-8, Air Force Institute of Technology (2014).

Anderson, T. N.

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Basu, S.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

Best, P. E.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

Biswas, K.

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

Black, P.

Blunck, D.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

Blunck, D. L.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[CrossRef] [PubMed]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).

Bradley, K. C.

K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
[CrossRef] [PubMed]

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

Brault, J. W.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Buijs, H.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Cai, W.

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Carangelo, R. M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

Caswell, A. W.

Chamberland, M.

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Chase, D. B.

Chien, P. L.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

Chien, P.-L.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Danchak, M.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

Dao, L.

Davis, S. P.

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

Depraz, S.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

Donovan, M. T.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Farley, V.

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

Flaud, J.-M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Gord, J. R.

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602– 8613 (2009).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Gordon, I. E.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Gordon, S.

S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” RP-1311, NASA (1996).

Gore, J.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

Gore, J. P.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[CrossRef] [PubMed]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).

Gross, K. C.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[CrossRef] [PubMed]

R. I. Acosta, K. C. Gross, G. P. Perram, S. Johnson, L. Dao, D. Medina, R. Roybal, and P. Black, “Gas phase plume from laser irradiated fiberglass reinforced polymers via imaging Fourier-transform spectroscopy,” Appl. Spectrosc. 68(7), 723–732 (2014).
[CrossRef] [PubMed]

K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
[CrossRef] [PubMed]

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

Hall, D. L.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Harley, J. L.

Howell, H. B.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Ilovici, I.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

Johnson, S.

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Katta, V.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

Katta, V. R.

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Kim, C. H.

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

Kraetschmer, T.

Laporte, D. D.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Legault, J. F.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

Lucht, R. P.

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Ma, L.

Mandin, J.-Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Markham, J. R.

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

Massie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

McBride, B. J.

S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” RP-1311, NASA (1996).

Mccann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Medina, D.

Mertz, L.

L. Mertz, Transformations in Optics (Wiley-Interscience, 1965).

Meyer, T. R.

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Miller, J. D.

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Miller, T. A.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Palmer, T. R.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Perevalov, V. I.

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).
[CrossRef]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Perram, G. P.

R. I. Acosta, K. C. Gross, G. P. Perram, S. Johnson, L. Dao, D. Medina, R. Roybal, and P. Black, “Gas phase plume from laser irradiated fiberglass reinforced polymers via imaging Fourier-transform spectroscopy,” Appl. Spectrosc. 68(7), 723–732 (2014).
[CrossRef] [PubMed]

K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
[CrossRef] [PubMed]

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

Perrin, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Perrin, M. Y.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

Rankin, B. A.

J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
[CrossRef] [PubMed]

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).

Revercomb, H. E.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Riviere, P.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Roy, S.

L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17(10), 8602– 8613 (2009).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

Roybal, R.

Sanders, S. T.

Schrock, C. R.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Smith, W. L.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Solomon, P. R.

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

Soufiani, A.

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

Sromovsky, L. A.

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Tashkun, S. A.

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).
[CrossRef]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

Torek, P. V.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Tremblay, P.

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

Vallières, A.

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Villemaire, A.

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Wooldridge, M. S.

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

Zheng, Y.

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

App. Opt. (2)

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser based UV absorption sensor,” App. Opt. 44, 6729–6740 (2005).
[CrossRef]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, and L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the high-resolution interferometer sounder,” App. Opt. 27, 3210–3218 (1988).
[CrossRef]

Appl. Spectrosc. (2)

Combust. Flame (2)

M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, M. S. Wooldridge, P. V. Torek, M. T. Donovan, D. L. Hall, T. A. Miller, T. R. Palmer, and C. R. Schrock, “An experimental investigation of gas-phase combustion synthesis of SiO2 nanoparticles using a multi-element diffusion flame burner,” Combust. Flame 131, 98–109 (2002).
[CrossRef]

P. E. Best, P. L. Chien, R. M. Carangelo, P. R. Solomon, M. Danchak, and I. Ilovici, “Tomographic reconstruction of FT-IR emission and transmission spectra in a sooting laminar diffusion flame: species concentrations and temperatures,” Combust. Flame 85, 309–318 (1991).
[CrossRef]

Environ. Sci. Technol. (1)

K. C. Gross, K. C. Bradley, and G. P. Perram, “Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy,” Environ. Sci. Technol. 44, 9390–9397 (2010).
[CrossRef] [PubMed]

J. Heat Transfer (1)

B. A. Rankin, D. L. Blunck, and J. P. Gore, “Infrared imaging and spatiotemporal radiation properties of a turbulent nonpremixed jet flame and plume,” J. Heat Transfer 135(2), 021201 (2013).

J. Quant. Spectrosc. Radiat. Transfer (5)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 111, 2139–2150 (2010).
[CrossRef]

S. A. Tashkun and V. I. Perevalov, “CDSD-4000: high-resolution, high-temperature carbon dioxide spectroscopic databank,” J. Quant. Spectrosc. Radiat. Transfer 112, 1403–1410 (2011).
[CrossRef]

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60(5), 665–710 (1998).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part I: Experimental setup and source characterization,” J. Quant. Spectrosc. Radiat. Transfer 113, 1–13 (2012).
[CrossRef]

S. Depraz, M. Y. Perrin, P. Riviere, and A. Soufiani, “Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and comparisons with spectroscopic databases,” J. Quant. Spectrosc. Radiat. Transfer 113, 14–25 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. Combust. Instit. (3)

K. Biswas, Y. Zheng, C. H. Kim, and J. Gore, “Stochastic time series analysis of pulsating buoyant pool fires,” Proc. Combust. Instit. 31, 2581–2588 (2007).
[CrossRef]

P. R. Solomon, P. E. Best, R. M. Carangelo, J. R. Markham, and P.-L. Chien, “FT-IR emission/transmission spectroscopy for in situ combustion diagnostics,” Proc. Combust. Instit. 21, 1763–1771 (1988).
[CrossRef]

D. Blunck, S. Basu, Y. Zheng, V. Katta, and J. Gore, “Simultaneous water vapor concentration and temperature measurements in unsteady hydrogen flames,” Proc. Combust. Instit. 32, 2527–2534 (2009).
[CrossRef]

Proc. SPIE (3)

K. C. Gross, P. Tremblay, K. C. Bradley, M. Chamberland, V. Farley, and G. P. Perram, “Instrument calibration and lineshape modeling for ultraspectral imagery measurements of industrial smokestack emissions,” Proc. SPIE 7695, 769516 (2010).

V. Farley, A. Vallières, M. Chamberland, A. Villemaire, and J. F. Legault, “Performance of the FIRST, a longwave infrared hyperspectral imaging sensor,” Proc. SPIE 6398, 6398T (2006).

P. Tremblay, K. C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G. P. Perram, “Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust,” Proc. SPIE 7457, 74570F (2009).

Other (5)

L. Mertz, Transformations in Optics (Wiley-Interscience, 1965).

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Academic Press, 2001).

K. Kohse-Hoinghaus and J. B. Jeffries, eds. Applied Combustion Diagnostics (Taylor and Francis, 2002).

R. I. Acosta, “Imaging Fourier transform spectroscopy of the boundary layer plume from laser irradiated polymers and carbon materials,” Ph.D. dissertation, AFIT-ENP-DS-14-J-8, Air Force Institute of Technology (2014).

S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications,” RP-1311, NASA (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic of the experimental arrangement. Important relative distances are provided as the image is not to scale. The Telops camera was placed on a rotation platform for fast and accurate transitions between the flame and calibration sources. An expanded view of the burner surface is provided to show the fuel tube and honeycomb mesh arrangement.

Fig. 2
Fig. 2

Representative single-pixel gain curve magnitude computed from standard calibration method (grey) compared with the gain curve magnitude obtained after atmospheric correction and spline smoothing (black). Residual difference between standard gain curve and the product of the smooth gain curve with atmospheric transmittance function is provided, offset by 1 a.u. r.u.. Atmospheric absorption features are annotated. Here, a.u. represents arbitrary units and r.u. represents radiometric units.

Fig. 3
Fig. 3

Split imagery of the symmetric flame for each of the four Φ values tested. Mean camera intensity values are on the left and coefficient of variation (CoV) values are on the right. The top and bottom of the color bar correspond to the mean intensity in 1,000’s of counts and CoV values, respectively.

Fig. 4
Fig. 4

Three center-flame spectra corresponding to heights 10 mm, 60 mm and 100 mm above the base of the Φ = 1.1 flame. The inset plots presents a detailed view of the P-branch corresponding to the fundamental 1 → 0 emission from CO. Odd numbered rotational levels are marked.

Fig. 5
Fig. 5

Top: Ethylene Φ = 1.1 center-flame spectrum 10 mm above burner (· black) is compared with a model fit ( oe----i001.jpg gray). Fit residuals, offset by −150μW/(cm2 sr cm−1), and instrument noise level, offset by −350μW/(cm2 sr cm−1), are provided. Bottom: Ratio of the flame path length, l, to the calculated mean free path of a photon, lMFP, under the conditions estimated by the model fit.

Fig. 6
Fig. 6

Spectrally-retrieved scalar values of ethylene flame 10 mm above the burner for the Φ = 1.1 condition. Error bars indicate the 95% confidence interval and only every other bar is shown for clarity. For comparison, the temperature value obtained by OH-laser absorption measurements ( oe----i002.jpg) and NASA CEA values ( oe----i003.jpg, oe----i004.jpg, oe----i005.jpg) are provided.

Fig. 7
Fig. 7

Variation of spectrally-retrieved average temperature with equivalence ratio in ethylene flame at a height of 10 mm above the burner. Comparison values of temperature measured with OH-laser absorption and chemical equilibrium are from Meyer et al. [12].

Fig. 8
Fig. 8

Left panel: Spectrally-retrieved temperature of ethylene flame at heights of 5 mm, 10 mm, 20 mm and 40 mm above the burner for the Φ = 0.9 condition. Error bars are not shown for clarity but have nominal half-widths of approximately 20 K. Right panel: Comparison of the spectrally-estimated temperatures (IFTS) with laser absorption measurements (OH-LA) at various heights along the centerline of the Φ = 0.9 flame. Error bars are omitted at every other point for clarity.

Fig. 9
Fig. 9

Spectrally-retrieved scalar values of the C2H2/air flame, along the centerline (v = 0), for Φ = 0.8 ( oe----i006.jpg red), Φ = 0.9 ( oe----i007.jpg blue), Φ = 1.1 (• black), and Φ = 1.3 ( oe----i008.jpg green). Error bars are omitted for clarity. Fit results obtained without the polynomial baseline correction for Φ = 0.8 ( oe----i009.jpg red) and Φ = 0.9 ( oe----i010.jpg blue) are annotated.

Fig. 10
Fig. 10

Split imagery comparison of path-averaged scalar values for Φ = 0.8 (left) and Φ = 1.1 (right). Left panel: Temperature. Center-left panel: H2O column density. Center-right panel: CO2 column density. Right: Scaled CO column density. CO values are tripled to use the full range of the common color axis. The top and bottom color bar scales represent temperature and column density, respectively.

Fig. 11
Fig. 11

Uncertainty distributions estimated from a 2,000 iteration Monte Carlo analysis to propagate calibration source uncertainties to the spectrally-retrieved scalar values. The shaded areas are centered at the mean value and correspond to the 95% confidence interval. Previous experimental and equilibrium results are provided for context.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I i ( x ) = 0 ( 1 + cos ( 2 π ν ˜ x ) ) G i ( ν ˜ ) ( L i ( ν ˜ ) + L i I ( ν ˜ ) ) d ν ˜
= I i DC + I i AC ( x ) .
Y i ( ν ˜ ) = G i ( ν ˜ ) ( L i ( ν ˜ ) + L i I ( ν ˜ ) ) .
L i ( ν ˜ ) = τ ( ν ˜ ) ε ( ν ˜ , T , ξ ) B ( ν ˜ , T ) * ILS ( ν ˜ )
ε ( ν ˜ , T , ξ ) = 1 exp ( l N i ξ i σ i ( ν ˜ , T ) ) = 1 exp ( l l MFP )
σ i ( ν ˜ , T ) = j S i j ( T ) ϕ i j ( ν ˜ ν ˜ j , T ) .

Metrics