Abstract

An optical fiber containing longitudinal holes adjacent to the core has been used to detect and collect fluorescent particles from a solution. Excitation light was launched through the fiber and fluorescence signal was guided back to a detector system. As a proof of principle, green and red fluorescent polystyrene beads were detected and selectively collected from a water solution containing a mixture of red and green fluorescent beads.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical micro-particle size detection by phase-generated carrier demodulation

Qing Li, He Huang, Feng Lin, and X. Wu
Opt. Express 24(11) 11458-11465 (2016)

Efficient nitrogen-vacancy centers’ fluorescence excitation and collection from micrometer-sized diamond by a tapered optical fiber in endoscope-type configuration

D. Duan, G. X. Du, V. K. Kavatamane, S. Arumugam, Y.-K. Tzeng, H-C Chang, and G. Balasubramanian
Opt. Express 27(5) 6734-6745 (2019)

Fluidic trapping and optical detection of microparticles with a functional optical fiber

S. Etcheverry, A. Russom, F. Laurell, and W. Margulis
Opt. Express 25(26) 33657-33663 (2017)

References

  • View by:
  • |
  • |
  • |

  1. O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
    [Crossref] [PubMed]
  2. P. B. Crone, “The counting of surface colonies of bacteria,” J. Hyg. (Lond.) 46(4), 426–430 (1948).
    [Crossref] [PubMed]
  3. M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
    [Crossref]
  4. D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
    [Crossref] [PubMed]
  5. L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
    [Crossref] [PubMed]
  6. M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
    [Crossref] [PubMed]
  7. K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
    [Crossref] [PubMed]
  8. H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses,” Microbiol. Rev. 60(4), 641–696 (1996).
    [PubMed]
  9. J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
    [Crossref] [PubMed]
  10. N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
    [Crossref] [PubMed]
  11. Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
    [Crossref] [PubMed]
  12. S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
    [Crossref] [PubMed]
  13. S. Sato, T. Ando, and M. Obara, “Optical fiber-based photomechanical gene transfer system for in vivo application,” Opt. Lett. 36(23), 4545–4547 (2011).
    [Crossref] [PubMed]
  14. M. Kühl, Methods in Enzymology (Elsevier, 2005), Chap. 10.
  15. E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (SciTech Publishing, 2004), Chap. 2.
  16. M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
    [Crossref]
  17. A. Sudirman, L. Norin, and W. Margulis, “Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber,” Opt. Express 20(27), 28049–28055 (2012).
    [Crossref] [PubMed]

2012 (2)

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

A. Sudirman, L. Norin, and W. Margulis, “Increased sensitivity in fiber-based spectroscopy using carbon-coated fiber,” Opt. Express 20(27), 28049–28055 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (2)

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

2008 (2)

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
[Crossref]

2007 (1)

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

2004 (1)

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

2002 (1)

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

2001 (1)

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

2000 (1)

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

1998 (1)

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

1996 (1)

H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses,” Microbiol. Rev. 60(4), 641–696 (1996).
[PubMed]

1948 (1)

P. B. Crone, “The counting of surface colonies of bacteria,” J. Hyg. (Lond.) 46(4), 426–430 (1948).
[Crossref] [PubMed]

Allard, W. J.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Ando, T.

Attfield, P. V.

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

Bao, N.

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

Bhunia, A. K.

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

Bjerketorp, J.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Bloem, J.

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

Bölter, M.

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

Brismar, H.

M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
[Crossref]

Bronsard, M.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Budd, G. T.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Chalmers, J. J.

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

Cristofanilli, M.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Crone, P. B.

P. B. Crone, “The counting of surface colonies of bacteria,” J. Hyg. (Lond.) 46(4), 426–430 (1948).
[Crossref] [PubMed]

Davey, H. M.

H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses,” Microbiol. Rev. 60(4), 641–696 (1996).
[PubMed]

Deere, D.

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

Del Campo, F. J.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Doyle, G. V.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Drouin, R.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Ellis, M. J.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Ferrari, B.

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

Forest, J. C.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Gros-Louis, F.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Hayes, D. F.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Hjort, K.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Huang, T.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Jagadeesan, B.

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

Jansson, J. K.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Kell, D. B.

H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses,” Microbiol. Rev. 60(4), 641–696 (1996).
[PubMed]

Krabchi, K.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Laurell, F.

M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
[Crossref]

Lazcka, O.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Lee, G. Y. H.

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Lim, C. T.

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Lu, C.

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

Margulis, W.

Massé, J.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Matera, J.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Meiners, K.

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

Miller, M. C.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Möller, R.

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

Moore, L.

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

Muñoz, F. X.

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Norin, L.

Obara, M.

Ong, C. N.

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Piper, J.

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

Reuben, J. M.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Sato, S.

Stjernström, M.

M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
[Crossref]

Stopeck, A.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Sudirman, A.

Sun, L.

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

Tan, S. J.

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Terstappen, L. W.

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Veal, D. A.

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

Willing, B.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Wu, L.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Yan, J.

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

Yan, X.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Yang, L.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Yao, Y.

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

Yobas, L.

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Zborowski, M.

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

Zhou, Y.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Zhu, S.

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

L. Yang, Y. Zhou, S. Zhu, T. Huang, L. Wu, and X. Yan, “Detection and quantification of bacterial autofluorescence at the single-cell level by a laboratory-built high-sensitivity flow cytometer,” Anal. Chem. 84(3), 1526–1532 (2012).
[Crossref] [PubMed]

Biol. Fertil. Soils (1)

M. Bölter, J. Bloem, K. Meiners, and R. Möller, “Enumeration and biovolume determination of microbial cells - a methodological review and recommendations for applications in ecological research,” Biol. Fertil. Soils 36(4), 249–259 (2002).
[Crossref]

Biomed. Microdevices (1)

S. J. Tan, L. Yobas, G. Y. H. Lee, C. N. Ong, and C. T. Lim, “Microdevice for the isolation and enumeration of cancer cells from blood,” Biomed. Microdevices 11(4), 883–892 (2009).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

O. Lazcka, F. J. Del Campo, and F. X. Muñoz, “Pathogen detection: a perspective of traditional methods and biosensors,” Biosens. Bioelectron. 22(7), 1205–1217 (2007).
[Crossref] [PubMed]

Biotechnol. Prog. (1)

J. J. Chalmers, M. Zborowski, L. Sun, and L. Moore, “Flow through, immunomagnetic cell separation,” Biotechnol. Prog. 14(1), 141–148 (1998).
[Crossref] [PubMed]

Clin. Genet. (1)

K. Krabchi, F. Gros-Louis, J. Yan, M. Bronsard, J. Massé, J. C. Forest, and R. Drouin, “Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques,” Clin. Genet. 60(2), 145–150 (2001).
[Crossref] [PubMed]

J. Chromatogr. A (1)

N. Bao, B. Jagadeesan, A. K. Bhunia, Y. Yao, and C. Lu, “Quantification of bacterial cells based on autofluorescence on a microfluidic platform,” J. Chromatogr. A 1181(1–2), 153–158 (2008).
[Crossref] [PubMed]

J. Hyg. (Lond.) (1)

P. B. Crone, “The counting of surface colonies of bacteria,” J. Hyg. (Lond.) 46(4), 426–430 (1948).
[Crossref] [PubMed]

J. Immunol. Methods (1)

D. A. Veal, D. Deere, B. Ferrari, J. Piper, and P. V. Attfield, “Fluorescence staining and flow cytometry for monitoring microbial cells,” J. Immunol. Methods 243(1-2), 191–210 (2000).
[Crossref] [PubMed]

J. Laser Appl. (1)

M. Stjernström, F. Laurell, and H. Brismar, “Diode-pumped solid state laser light sources for confocal laser scanning fluorescence microscopy,” J. Laser Appl. 20(3), 160 (2008).
[Crossref]

Lab Chip (1)

Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort, “Soft inertial microfluidics for high throughput separation of bacteria from human blood cells,” Lab Chip 9(9), 1193–1199 (2009).
[Crossref] [PubMed]

Microbiol. Rev. (1)

H. M. Davey and D. B. Kell, “Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses,” Microbiol. Rev. 60(4), 641–696 (1996).
[PubMed]

N. Engl. J. Med. (1)

M. Cristofanilli, G. T. Budd, M. J. Ellis, A. Stopeck, J. Matera, M. C. Miller, J. M. Reuben, G. V. Doyle, W. J. Allard, L. W. Terstappen, and D. F. Hayes, “Circulating tumor cells, disease progression, and survival in metastatic breast cancer,” N. Engl. J. Med. 351(8), 781–791 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

M. Kühl, Methods in Enzymology (Elsevier, 2005), Chap. 10.

E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section (SciTech Publishing, 2004), Chap. 2.

Supplementary Material (2)

» Media 1: MP4 (1825 KB)     
» Media 2: MP4 (1228 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Calculation of the signal detected for the arrangement implemented experimentally below. The blue curve shows the excitation signal reaching on-axis particles, the red curve the fraction of the signal detected for unitary efficiency of emission and detection, and the black curve the signal detected taking into account the two effects above.
Fig. 2
Fig. 2 In order to guarantee the collection of an on-axis particle that triggers the suction system distance L from the fiber-tip and R from the hole entrance, a minimum volume of fluid needs to be retrieved ~2/3 πR3. This volume should be minimized for improved performance.
Fig. 3
Fig. 3 Schematic illustration of the experimental setup.
Fig. 4
Fig. 4 SEM-images of the 125-μm diameter microstructured fibers used in this work. (a) Illustration of the 1-hole fiber with a ~30 µm diameter hole and (b) the 2-hole fiber with ~26 µm diameter holes. Both fibers had 8-μm cores.
Fig. 5
Fig. 5 Image of carbon-coated fiber (on the left) spliced to a microstructured fiber (on the right) which had been side-polished to open the active hole. This opening in the fiber is placed inside a needle, that works as a pressure vessel, and which is protected by a conventional splice protector. The needle itself is side-polished to allow for lateral entrance of the carbon-coated fiber. The opening in the metal is sealed by the splice protector.
Fig. 6
Fig. 6 (See Media 1.) Collection of green fluorescent beads. (a) The fluorescence signal produced by the particle and detected activates the trigger and starts the suction mechanism. (b) The bead is retrieved into the hole with the surrounding liquid volume.
Fig. 7
Fig. 7 (See Media 2.) (a) Time sequence of the detected signal in the PMT showing that three trigger events take place. Three green fluorescent beads are collected. (b) Illustration of fluorescent green bead 42 µm from the fiber-tip, just before collection. (c) Time sequence of the detected signal during collection of red beads. One particle, shown in (d) is collected.

Metrics