Abstract

We demonstrate an athermal and electrostatically-tunable 850nm-band MEMS VCSEL for the first time. The thermal wavelength drift is compensated by the thermal actuation of a cantilever-suspended mirror with a bimorph effect. At the same time, the resonant wavelength can be continuously tuned by electro-static force as a voltage is applied in the cantilever structure. A continuous wavelength tuning of 10 nm is obtained with a low thermal wavelength drift, which is 10 times smaller than that of conventional VCSELs. Our athermal and tunable VCSELs enable us to reduce the channel spacing in course wavelength division multiplexing optical interconnects even under uncooled operations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature characteristics of surface micromachined MEMS-VCSEL with large tuning range

C. Gierl, T. Gründl, S. Paul, K. Zogal, M. T. Haidar, P. Meissner, M.-C. Amann, and F. Küppers
Opt. Express 22(11) 13063-13072 (2014)

Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL

Sujoy Paul, Mohammad Tanvir Haidar, Julijan Cesar, Mohammadreza Malekizandi, Benjamin Kögel, Christian Neumeyr, Markus Ortsiefer, and Franko Küppers
Opt. Express 24(12) 13142-13156 (2016)

Optimization of electrically tunable VCSEL with intracavity nematic liquid crystal

Carlos Belmonte, Leszek Frasunkiewicz, Tomasz Czyszanowski, Hugo Thienpont, Jeroen Beeckman, Kristiaan Neyts, and Krassimir Panajotov
Opt. Express 23(12) 15706-15715 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).
  2. M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
    [Crossref]
  3. W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
    [Crossref]
  4. S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
    [Crossref]
  5. R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
    [Crossref]
  6. Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
    [Crossref]
  7. C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
    [Crossref]
  8. J. S. Harris, “Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?” IEEE J. Sel. Top. Quantum Electron. 6(6), 1145–1160 (2000).
    [Crossref]
  9. T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ Gas Detection and Identification,” IEEE Sensors 2007 Conference, •••, 1368-1371 (2007).
    [Crossref]
  10. V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
    [Crossref] [PubMed]
  11. M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
    [Crossref]
  12. F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
    [Crossref]
  13. V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
    [Crossref] [PubMed]
  14. C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
    [Crossref] [PubMed]
  15. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
    [Crossref] [PubMed]
  16. B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
    [Crossref]
  17. T. Amano, F. Koyama, T. Hino, A. Arai, and A. Mastutani, “Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control,” J. Lightwave Technol. 21(3), 596–601 (2003).
    [Crossref]
  18. W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
    [Crossref]
  19. H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
    [Crossref]
  20. M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
    [Crossref]
  21. H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
    [Crossref]
  22. M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
    [Crossref]
  23. S. Adachi, “Properties of Aluminium Gallium Arsenide,” EMIS datareviews series No.7, IET (1993).
  24. M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
    [Crossref]
  25. W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
    [Crossref]
  26. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1964).
  27. K. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Dev. 25(10), 1241–1250 (1978).
    [Crossref]
  28. H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
    [Crossref]

2014 (2)

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

2013 (1)

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

2012 (6)

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

M. A. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012).
[Crossref]

W. Zhang, H. Wang, and K. Bergman, “Next-generation optically-interconnected high-performance data centers,” J. Lightwave Technol. 30(24), 3836–3844 (2012).
[Crossref]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

2011 (1)

2010 (1)

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

2009 (1)

H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
[Crossref]

2008 (1)

2007 (1)

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

2006 (2)

W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
[Crossref]

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

2005 (1)

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

2004 (1)

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

2003 (1)

2002 (1)

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

2000 (2)

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

J. S. Harris, “Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?” IEEE J. Sel. Top. Quantum Electron. 6(6), 1145–1160 (2000).
[Crossref]

1998 (1)

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

1993 (1)

W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

1978 (1)

K. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Dev. 25(10), 1241–1250 (1978).
[Crossref]

Ahmed, M.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

Amann, M.-C.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Amano, T.

Arai, A.

Arai, S.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Baba, T.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

Bakry, A.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

Bengtsson, J.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Bergman, K.

Boehm, G.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Bohm, G.

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

Böhm, G.

Burgner, C.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Cable, A.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Chang-Hasnain, C.

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

Chang-Hasnain, C. J.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16(18), 14221–14226 (2008).
[Crossref] [PubMed]

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

Chu, W.

W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Cole, G. D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Dalir, H.

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Davani, H. A.

Davies, A. R.

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

Debernardi, P.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

Fujita, M.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

Gierl, C.

Gill, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Grasse, C.

Gruendl, T.

Gustavsson, J. S.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Haglund, Å.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Haglund, E.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Halbritter, H.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Harris, J. S.

J. S. Harris, “Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?” IEEE J. Sel. Top. Quantum Electron. 6(6), 1145–1160 (2000).
[Crossref]

Hino, T.

Huang, M. C. Y.

Ingham, J. D.

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

Inoue, S.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Janto, W.

W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
[Crossref]

Jatta, S.

Jayaraman, V.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

John, D.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Kamalov, V.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Kawashima, H.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Kogel, B.

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

Kögel, B.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Kokubun, Y.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

Koley, B.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Koyama, F.

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
[Crossref]

W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
[Crossref]

T. Amano, F. Koyama, T. Hino, A. Arai, and A. Mastutani, “Design and fabrication of GaAs-GaAlAs micromachined tunable filter with thermal strain control,” J. Lightwave Technol. 21(3), 596–601 (2003).
[Crossref]

Küppers, F.

Lam, C. F.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Larsson, A.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

Li, G. S.

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

Li, M. Y.

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

Liu, H.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Liu, Y.

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

Maruyama, T.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Mastutani, A.

Matsutani, A.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
[Crossref]

W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
[Crossref]

Maute, M.

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Mehregany, M.

W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Meissner, P.

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meissner, and M.-C. Amann, “Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning,” Opt. Express 19(18), 17336–17343 (2011).
[Crossref] [PubMed]

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Mullen, R. L.

W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Naitoh, H.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Nakahama, M.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

Nakata, N.

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

Penty, R. V.

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

Petersen, K.

K. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Dev. 25(10), 1241–1250 (1978).
[Crossref]

Riemenschneider, F.

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

Robertson, M.

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

Sakaguchi, T.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Sakai, A.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

Sakamoto, S.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Sano, H.

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
[Crossref]

Tamura, S.

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

Taubenblatt, M. A.

Uddin, A.

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

Ushigome, R.

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

Wang, H.

Westbergh, P.

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

White, I. H.

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

Yuen, W.

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

Zhang, W.

Zhao, X.

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

Zhou, Y.

Zogal, K.

Appl. Phys. Express (2)

H. Sano, A. Matsutani, and F. Koyama, “Athermal 850 nm vertical cavity surface emitting lasers with thermally actuated cantilever structure,” Appl. Phys. Express 2(7), 072101 (2009).
[Crossref]

H. Dalir and F. Koyama, “High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. Sano, N. Nakata, M. Nakahama, A. Matsutani, and F. Koyama, “Athermal and tunable operations of 850 nm vertical cavity surface emitting lasers with thermally actuated T-shape membrane structure,” Appl. Phys. Lett. 101(12), 121115 (2012).
[Crossref]

Electron. Lett. (2)

V. Jayaraman, G. D. Cole, M. Robertson, A. Uddin, and A. Cable, “High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range,” Electron. Lett. 48(14), 867–869 (2012).
[Crossref] [PubMed]

V. Jayaraman, G. D. Cole, M. Robertson, C. Burgner, D. John, A. Uddin, and A. Cable, “Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs,” Electron. Lett. 48(21), 1331–1333 (2012).
[Crossref] [PubMed]

IEEE Commun. Mag. (1)

C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, “Fiber optic communication technologies: What's needed for datacenter network operations,” IEEE Commun. Mag. 48(7), 32–39 (2010).

IEEE J. Quantum Electron. (1)

B. Kögel, P. Debernardi, P. Westbergh, J. S. Gustavsson, Å. Haglund, E. Haglund, J. Bengtsson, and A. Larsson, “Integrated MEMS-tunable VCSELs using a self-aligned reflow process,” IEEE J. Quantum Electron. 48(2), 144–152 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000).
[Crossref]

J. S. Harris, “Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?” IEEE J. Sel. Top. Quantum Electron. 6(6), 1145–1160 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (6)

M. Y. Li, W. Yuen, G. S. Li, and C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10(1), 18–20 (1998).
[Crossref]

F. Riemenschneider, M. Maute, H. Halbritter, G. Boehm, M.-C. Amann, and P. Meissner, “Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range,” IEEE Photon. Technol. Lett. 16(10), 2212–2214 (2004).
[Crossref]

S. Sakamoto, H. Kawashima, H. Naitoh, S. Tamura, T. Maruyama, and S. Arai, “Reduced temperature dependence of lasing wavelength in membrane buried heterostructure DFB lasers with polymer cladding layers,” IEEE Photon. Technol. Lett. 19(5), 291–293 (2007).
[Crossref]

M. Maute, B. Kogel, G. Bohm, P. Meissner, and M.-C. Amann, “MEMS-tunable 1.55-μm VCSEL with extended tuning range incorporating a buried tunnel junction,” IEEE Photon. Technol. Lett. 18(5), 688–690 (2006).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, and F. Koyama, “Tuning characteristics of monolithic MEMS VCSELs with oxide anti-reflection layer,” IEEE Photon. Technol. Lett. 25(18), 1747–1750 (2013).
[Crossref]

Y. Liu, A. R. Davies, J. D. Ingham, R. V. Penty, and I. H. White, “Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems,” IEEE Photon. Technol. Lett. 17(10), 2026–2028 (2005).
[Crossref]

IEEE Trans. Electron. Dev. (1)

K. Petersen, “Dynamic micromechanics on silicon: techniques and devices,” IEEE Trans. Electron. Dev. 25(10), 1241–1250 (1978).
[Crossref]

J. Lightwave Technol. (3)

J. Micromech. Microeng. (1)

W. Chu, M. Mehregany, and R. L. Mullen, “Analysis of tip deflection and force of a bimetallic cantilever microactuator,” J. Micromech. Microeng. 3(1), 4–7 (1993).
[Crossref]

Jpn. J. Appl. Phys. (3)

R. Ushigome, M. Fujita, A. Sakai, T. Baba, and Y. Kokubun, “GaInAsP microdisk injection laser with benzocyclobutene polymer cladding and its athermal effect,” Jpn. J. Appl. Phys. 41(11A), 6364–6369 (2002).
[Crossref]

W. Janto, A. Matsutani, and F. Koyama, “Design, fabrication, and characterization of tunable micromachined filter with double-cavity structure,” Jpn. J. Appl. Phys. 45(10A), 7732–7736 (2006).
[Crossref]

M. Nakahama, H. Sano, S. Inoue, T. Sakaguchi, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “Wavelength tuning and controlled temperature dependence in vertical-cavity surface-emitting lasers with a thermally and electrostatically actuated cantilever structure,” Jpn. J. Appl. Phys. 53(1), 010303 (2014).
[Crossref]

Opt. Express (2)

Other (3)

S. Adachi, “Properties of Aluminium Gallium Arsenide,” EMIS datareviews series No.7, IET (1993).

T. C. Bond, G. D. Cole, L. L. Goddard, and E. M. Behymer, “Photonic MEMS for NIR in-situ Gas Detection and Identification,” IEEE Sensors 2007 Conference, •••, 1368-1371 (2007).
[Crossref]

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, 1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic structure of the athermal and tunable MEMS VCSEL.
Fig. 2
Fig. 2 (a) Calculated temperature dependence of wavelengths as a function of a cantilever length without an applied voltage. (b) Wavelength shift as a function of an applied voltage at 20 þC. (c) Temperature dependence of wavelengths versus wavelength shift under electrostatic wavelength tuning. (d) Wavelength tuning range with keeping a temperature coefficient 10 times smaller than that of conventional VCSELs.
Fig. 3
Fig. 3 Scanning electron microscope image of a fabricated 850nm-band MEMS VCSEL with a thermally and electrostatically actuated cantilever.
Fig. 4
Fig. 4 Electrostatic wavelength tuning characteristics. (a) Emission spectra at different applied voltages. (b) Wavelength as a function of the applied voltage.
Fig. 5
Fig. 5 (a) L-I and V-I characteristics at different lasing wavelengths. The wavelength is measured at a bias current of 4 mA. (b) Threshold current as a function of wavelength.
Fig. 6
Fig. 6 Temperature dependence under electrostatic wavelength tuning. (a) Wavelength as a function of TEC temperature at different applied voltages. (b) Emission spectra at 11.5-13.7V under different TEC temperatures.
Fig. 7
Fig. 7 Measured and calculated temperature coefficients versus wavelength during wavelength tuning.

Tables (1)

Tables Icon

Table 1 Material constants and structural parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ ΔT = 1 n Δn ΔT λ+ 1 L ΔL ΔT λ
1/R= 6( t S E S + t D E D )( t S + t D ) ( t D t S E D E S ) 2 [ ( t D E S t S ) 2 + ( t S E D t D ) 2 + 1 E S E D ( 4 t D t S +4 t S t D +6 ) ] ( a D a S ) ( a D t D E D + a S t S E S )
Δ x Th = L c 2 2R
Δ x ES =b 0 Lc (3Lcx) 6EI x 2 ε 0 2 ( V ( d+( x 2 /2R) ) (x/Lc) 2 Δ x ES )dx

Metrics