Abstract

The modulation efficiency of the double-phase hologram macro-pixel that is designed for complex modulation of light waves is defined and analyzed. The scale-down of the double-phase hologram macro-pixel associated with the construction of complex spatial light modulators is discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Double-phase holograms implemented with phase-only spatial light modulators: performance evaluation and improvement

Victor Arrizón and David Sánchez-de-la-Llave
Appl. Opt. 41(17) 3436-3447 (2002)

Characteristics of complex light modulation through an amplitude-phase double-layer spatial light modulator

Sungjae Park, Jinyoung Roh, Soobin Kim, Juseong Park, Hoon Kang, Joonku Hahn, Youngjin Jeon, Shinwoong Park, and Hwi Kim
Opt. Express 25(4) 3469-3480 (2017)

Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter

Hoon Song, Geeyoung Sung, Sujin Choi, Kanghee Won, Hong-Seok Lee, and Hwi Kim
Opt. Express 20(28) 29844-29853 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Neto, D. Roberge, and Y. Sheng, “Full-range, continuous, complex modulation by the use of two coupled-mode liquid-crystal televisions,” Appl. Opt. 35(23), 4567–4576 (1996).
    [Crossref] [PubMed]
  2. S. Reichelt, R. Häussler, G. Fütterer, N. Leister, H. Kato, N. Usukura, and Y. Kanbayashi, “Full-range, complex spatial light modulator for real-time holography,” Opt. Lett. 37(11), 1955–1957 (2012).
    [Crossref] [PubMed]
  3. E. Ulusoy, L. Onural, and H. M. Ozaktas, “Full-complex amplitude modulation with binary spatial light modulators,” J. Opt. Soc. Am. A 28(11), 2310–2321 (2011).
    [Crossref] [PubMed]
  4. V. Arrizón, “Complex modulation with a twisted-nematic liquid-crystal spatial light modulator: double-pixel approach,” Opt. Lett. 28(15), 1359–1361 (2003).
    [Crossref] [PubMed]
  5. M. Makowski, A. Siemion, I. Ducin, K. Kakarenko, M. Sypek, A. M. Siemion, J. Suszek, D. Wojnowski, Z. Jaroszewicz, and A. Kolodziejczyk, “Complex light modulation for lensless image projection,” Chin. Opt. Lett. 9, 120008 (2011).
    [Crossref]
  6. J.-P. Liu, W.-Y. Hsieh, T.-C. Poon, and P. Tsang, “Complex Fresnel Hologram Display using a Single SLM,” Appl. Opt. 50(34), H128–H135 (2011).
    [Crossref] [PubMed]
  7. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
    [Crossref]
  8. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
    [Crossref] [PubMed]
  9. H. Song, G. Sung, S. Choi, K. Won, H.-S. Lee, and H. Kim, “Optimal synthesis of double-phase computer generated holograms using a phase-only spatial light modulator with grating filter,” Opt. Express 20(28), 29844–29853 (2012).
    [Crossref] [PubMed]
  10. H. Song, G. Sung, K. Won, J. An, Y. Yun, J. E. Jung, J. Ungnapatanin, D. Im, H. Kim, H.-S. Lee, and U. I. Chung, “Holographic display with a FPD-based complex spatial light modulator,” Proc. SPIE 8977, MOEMS and Miniaturized Systems XIII, 89770N (2014).
  11. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, Boca Raton, FL, 2012).
  12. H. Kim, C.-Y. Hwang, K.-S. Kim, J. Roh, W. Moon, S. Kim, D.-R. Lee, S. Oh, and J. Hahn, “Anamorphic optical transformation of amplitude spatial light modulator to complex spatial light modulator with square pixel,” Appl. Opt. 53(27), G139–G146 (2014).
    [Crossref]

2014 (1)

2012 (2)

2011 (3)

2008 (1)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
[Crossref]

2003 (1)

1996 (1)

Arrizón, V.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
[Crossref]

Choi, S.

Ducin, I.

Fütterer, G.

Hahn, J.

Häussler, R.

Hsieh, W.-Y.

Hwang, C.-Y.

Jaroszewicz, Z.

Kakarenko, K.

Kanbayashi, Y.

Kato, H.

Kim, H.

Kim, K.-S.

Kim, S.

Kolodziejczyk, A.

Lee, B.

Lee, D.-R.

Lee, H.-S.

Leister, N.

Liu, J.-P.

Makowski, M.

Moon, W.

Neto, L. G.

Oh, S.

Onural, L.

Ozaktas, H. M.

Poon, T.-C.

Reichelt, S.

Roberge, D.

Roh, J.

Sheng, Y.

Siemion, A.

Siemion, A. M.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
[Crossref]

Song, H.

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
[Crossref]

Sung, G.

Suszek, J.

Sypek, M.

Tsang, P.

Ulusoy, E.

Usukura, N.

Wojnowski, D.

Won, K.

Appl. Opt. (4)

Chin. Opt. Lett. (1)

IEEE Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” IEEE Computer 38(8), 46–53 (2005).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Opt. Lett. (2)

Other (2)

H. Song, G. Sung, K. Won, J. An, Y. Yun, J. E. Jung, J. Ungnapatanin, D. Im, H. Kim, H.-S. Lee, and U. I. Chung, “Holographic display with a FPD-based complex spatial light modulator,” Proc. SPIE 8977, MOEMS and Miniaturized Systems XIII, 89770N (2014).

H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC Press, Boca Raton, FL, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure of the DPH macro-pixel: (a) perspective view and (b) side view.
Fig. 2
Fig. 2 Design process of the first and second filters for the modulation efficiency evaluation process. The first filter is the optical low-pass filter in the angular spectrum domain for extracting normally directed finite-size phase-modulated fields from the total field. Extraction of the normally directed phase-modulated fields from (a) the upper pixel and (b) the lower pixel. (c) The second filter is the aperture filter that constrains the spatial width of the complex-modulated wave components in the intersection area of the two filtered wave components. The modulation efficiency estimation is carried out using a Poynting vector calculation in the region specified by the second filter.
Fig. 3
Fig. 3 Identification of the intersection area of the two light waves from the upper and lower pixels. Light field distributions of the DPH macro-pixel architecture from (a) upper pixel and (b) lower pixel. The angular spectrum profiles of the phase-modulated light waves from (c) the upper-pixel and (d) the lower-pixel. The wave components selected by the first step low-pass filter are indicated by red-line curve. (e) The second step spatial filter with width Wh specifying the intersection region where an effective complex modulation operation occurs.
Fig. 4
Fig. 4 Identification of the complex-modulated signal wave using the two step filtering process: (a) total electric field distribution, (b) filtered complex-modulated signal wave, (c) the first filtering process to eliminate higher-order diffraction components, and (d) the second filtering process to identify the complex-modulated signal wave in the intersection region of width W h .
Fig. 5
Fig. 5 Complex modulations and corresponding light field distributions in the 40μm DPH macro-pixel for (a) U( ϕ 1 = 350 , ϕ 2 = 170 )=0, (b) U( ϕ 1 = 170 , ϕ 2 = 240 )=0.67+j0.02 , and (c) U( ϕ 1 = 20 , ϕ 2 = 20 )=0.82+j0.04 . The filtered complex-modulated signal field distributions are presented together with the corresponding total field distributions for all cases.
Fig. 6
Fig. 6 Modulation dynamic range of the DPH macro-pixel: (a) amplitude, (b) phase, and (c) its polar coordinate diagram representation.
Fig. 7
Fig. 7 Downsized 8μm DPH macro-pixel: (a) structure, (b) diffraction efficiency of binary phase grating, and light field distributions from (c) upper pixel and (d) lower pixel, (e) the total field distribution, and (f) the complex-modulated signal wave.
Fig. 8
Fig. 8 Complex modulation and corresponding light field distributions in the 8μm DPH macro-pixel for (a) U( ϕ 1 = 350 , ϕ 2 = 170 )=0, (b) U( ϕ 1 = 170 , ϕ 2 = 240 )=0.57+j0.47 , and (c) U( ϕ 1 = 130 , ϕ 2 = 130 )=0.73j0.53 .

Tables (2)

Tables Icon

Table 1 Quantitative Modulation Efficiency Evaluation of the 40μm DPH Macro-Pixel.

Tables Icon

Table 2 Quantitative modulation efficiency evaluation of the 8μm DPH macro-pixel

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U( ϕ 1 , ϕ 2 )=0.5η[ exp( j ϕ 1 )+exp( j ϕ 2 ) ]=ηcos[ ( ϕ 1 ϕ 2 )/2 ]exp[ j( ϕ 1 + ϕ 2 )/2 ],
Λ= λ sinθ ,
ψ= sin 1 ( 1/ ( n pr cosθ sinθ ) 2 +1 ),
h p = T x tanψ.
h r = T x /( 2tanθ )=373μm.

Metrics