Abstract

dop histograms are measured in the off-specular far field speckle of disordered media under polarized and unpolarized illumination. Three surface samples with increasing roughnesses, and three bulk samples with different absorption levels, are investigated. Results show that both rough surfaces and absorbing bulks hold the incident polarization, while transparent bulks allow to depolarize or to enpolarize the incident light. Hence we provide a first experimental evidence of such effects.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enpolarization and depolarization of light scattered from chromatic complex media

G. Soriano, M. Zerrad, and C. Amra
Opt. Express 22(10) 12603-12613 (2014)

Enpolarization of light by scattering media

J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra
Opt. Express 19(22) 21313-21320 (2011)

Accurate metrology of polarization curves measured at the speckle size of visible light scattering

A. Ghabbach, M. Zerrad, G. Soriano, and C. Amra
Opt. Express 22(12) 14594-14609 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge University Press, ed. 1995)
  2. C. Brosseau, Fundamentals of Polarized Light - A Statistical Approach (Wiley, New York, 1998)
  3. J. W. Goodman, Statistical Optics (Wiley- Interscience, 2000).
  4. E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, ed. 2006)
  5. E. Wolf, Theory of Coherence and Polarization of Light (Cambridge University Press, ed. 2007)
  6. M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, “Gradual loss of polarization in light scattered from rough surfaces: electromagnetic prediction,” Opt. Express 18(15), 15832–15843 (2010).
    [Crossref] [PubMed]
  7. G. Soriano, M. Zerrad, and C. Amra, “Enpolarization and depolarization of light scattered from chromatic complex media,” Opt. Express 22(10), 12603–12613 (2014).
    [Crossref] [PubMed]
  8. J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express 19(22Issue 22), 21313–21320 (2011).
    [Crossref] [PubMed]
  9. M. Zerrad, G. Soriano, A. Ghabbach, and C. Amra, “Light enpolarization by disordered media under partial polarized illumination: The role of cross-scattering coefficients,” Opt. Express 21(3), 2787–2794 (2013).
    [Crossref] [PubMed]
  10. A. Ghabbach, M. Zerrad, G. Soriano, and C. Amra, “Accurate metrology of polarization curves measured at the speckle size of visible light scattering,” Opt. Express 22(12), 14594–14609 (2014).
    [Crossref] [PubMed]
  11. O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17(18), 15623–15634 (2009).
    [Crossref] [PubMed]
  12. F. Goudail and A. Bénière, “Estimation precision of the degree of linear polarization and of the angle of polarization in the presence of different sources of noise,” Appl. Opt. 49(4), 683–693 (2010).
    [Crossref] [PubMed]
  13. L. Pouget, J. Fade, C. Hamel, and M. Alouini, “Polarimetric imaging beyond the speckle grain scale,” Appl. Opt. 51(30), 7345–7356 (2012).
    [Crossref] [PubMed]
  14. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Correlation matrix of a completely polarized, statistically stationary electromagnetic field,” Opt. Lett. 29(13), 1536–1538 (2004).
    [Crossref] [PubMed]
  15. J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18(19Issue 19), 20105–20113 (2010).
    [Crossref] [PubMed]
  16. J. Broky and A. Dogariu, “Correlations of polarization in random electro-magnetic fields,” Opt. Express 19(17), 15711–15719 (2011).
    [Crossref] [PubMed]
  17. O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
    [Crossref] [PubMed]
  18. A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
    [Crossref]
  19. G. Zhang, L. Tsang, and K. Pak, “Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface,” J. Opt. Soc. Am. A 15(12), 2995–3002 (1998).
    [Crossref]
  20. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (1)

2011 (2)

2010 (3)

2009 (2)

O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17(18), 15623–15634 (2009).
[Crossref] [PubMed]

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

2004 (1)

2002 (1)

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

1998 (1)

1989 (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Alouini, M.

Amra, C.

Angelsky, O. V.

O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17(18), 15623–15634 (2009).
[Crossref] [PubMed]

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

Bénière, A.

Bogatyryova, H. V.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

Broky, J.

Chernyshov, A. A.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

Dogariu, A.

Ellis, J.

Fade, J.

Felde, Ch. V.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

Ghabbach, A.

Gorodyns’ka, N. V.

Gorsky, M. P.

Goudail, F.

Hamel, C.

Hanson, S. G.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Mokhun, A. I.

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

Mokhun, I. I.

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

Pak, K.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Polyanskii, P. V.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

Ponomarenko, S.

Pouget, L.

Soriano, G.

Sorrentini, J.

Soskin, M. S.

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

Tsang, L.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Wolf, E.

Zenkova, C. Y.

Zerrad, M.

Zhang, G.

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Opt. A, Pure Appl. Opt. (1)

A. A. Chernyshov, Ch. V. Felde, H. V. Bogatyryova, P. V. Polyanskii, and M. S. Soskin, “Vector singularities of the combined beams assembled from mutually incoherent orthogonally polarized components,” J. Opt. A, Pure Appl. Opt. 11(9), 094010 (2009).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (8)

J. Broky and A. Dogariu, “Complex degree of mutual polarization in randomly scattered fields,” Opt. Express 18(19Issue 19), 20105–20113 (2010).
[Crossref] [PubMed]

J. Broky and A. Dogariu, “Correlations of polarization in random electro-magnetic fields,” Opt. Express 19(17), 15711–15719 (2011).
[Crossref] [PubMed]

M. Zerrad, J. Sorrentini, G. Soriano, and C. Amra, “Gradual loss of polarization in light scattered from rough surfaces: electromagnetic prediction,” Opt. Express 18(15), 15832–15843 (2010).
[Crossref] [PubMed]

G. Soriano, M. Zerrad, and C. Amra, “Enpolarization and depolarization of light scattered from chromatic complex media,” Opt. Express 22(10), 12603–12613 (2014).
[Crossref] [PubMed]

J. Sorrentini, M. Zerrad, G. Soriano, and C. Amra, “Enpolarization of light by scattering media,” Opt. Express 19(22Issue 22), 21313–21320 (2011).
[Crossref] [PubMed]

M. Zerrad, G. Soriano, A. Ghabbach, and C. Amra, “Light enpolarization by disordered media under partial polarized illumination: The role of cross-scattering coefficients,” Opt. Express 21(3), 2787–2794 (2013).
[Crossref] [PubMed]

A. Ghabbach, M. Zerrad, G. Soriano, and C. Amra, “Accurate metrology of polarization curves measured at the speckle size of visible light scattering,” Opt. Express 22(12), 14594–14609 (2014).
[Crossref] [PubMed]

O. V. Angelsky, S. G. Hanson, C. Y. Zenkova, M. P. Gorsky, and N. V. Gorodyns’ka, “On polarization metrology (estimation) of the degree of coherence of optical waves,” Opt. Express 17(18), 15623–15634 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter (1)

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B Condens. Matter 40(13), 9342–9345 (1989).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

O. V. Angelsky, I. I. Mokhun, A. I. Mokhun, and M. S. Soskin, “Interferometric methods in diagnostics of polarization singularities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036602 (2002).
[Crossref] [PubMed]

Other (5)

E. Wolf and L. Mandel, Optical Coherence and Quantum Optics (Cambridge University Press, ed. 1995)

C. Brosseau, Fundamentals of Polarized Light - A Statistical Approach (Wiley, New York, 1998)

J. W. Goodman, Statistical Optics (Wiley- Interscience, 2000).

E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor and Francis Group, ed. 2006)

E. Wolf, Theory of Coherence and Polarization of Light (Cambridge University Press, ed. 2007)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Photographs of the 3 surface samples: lambertian (left), grounded (middle) and polished (right).
Fig. 2
Fig. 2 Angle-resolved scattering curves (ARS) of the surface samples in Fig. 1.
Fig. 3
Fig. 3 Normalized dop histograms measured for the lambertian (in red), grounded (black) and polished (in purple) surfaces- Case of polarized illumination.
Fig. 4
Fig. 4 Polarization states on the Poincaré sphere for the Au lambertian sample (S1)- Polarized illumination.
Fig. 5
Fig. 5 Polarization states on the Poincaré sphere for the grounded (left, S2) and the polished (right, S3) black surfaces - Polarized illumination.
Fig. 6
Fig. 6 Normalized dop histograms measured for the lambertian, grounded and polished surfaces- Unpolarized illumination.
Fig. 7
Fig. 7 Polarization states on the Poincaré sphere for the Au lambertian surface sample (S1). Unpolarized illumination.
Fig. 8
Fig. 8 Polarization states on the Poincaré sphere for the grounded surface sample (S2). Unpolarized illumination.
Fig. 9
Fig. 9 Polarization states on the Poincaré sphere for the polished surface sample (S3). Unpolarized illumination.
Fig. 10
Fig. 10 Pictures of the 3 bulk (Bi) samples. From left to right: white (B1), grey (B2) and black (B3).
Fig. 11
Fig. 11 ARS curves of the 3 bulk samples.
Fig. 12
Fig. 12 Normalized dop histograms of the 3 bulk samples -Polarized illumination. B1: white bulk, B2: grey bulk, B3: black bulk.
Fig. 13
Fig. 13 Polarization states of the white bulk sample. Polarized illumination.
Fig. 14
Fig. 14 Polarization states of the bulk grey sample. Polarized illumination.
Fig. 15
Fig. 15 Polarization states of the bulk black sample- Polarized illumination.
Fig. 16
Fig. 16 Normalized dop histograms of the 3 bulk samples –Unpolarized illumination B1: white bulk, B2: grey bulk, B3: black bulk.
Fig. 17
Fig. 17 Polarization states for the bulk white sample- unpolarized illumination.
Fig. 18
Fig. 18 Polarization states for the bulk grey sample- unpolarized illumination.
Fig. 19
Fig. 19 Polarization states for the bulk black sample- unpolarized illumination.
Fig. 20
Fig. 20 pdf of the polarization degree calculated for a bulk sample under polarized (green curve) and un-polarized (blue curve) illumination.

Metrics