Abstract

We report the observation of optomechanical oscillation by immersing a silica microsphere in liquid. Due to the ultra high quality factor of the microsphere in the aqueous environment, sufficient optical force was established to quiver the microsphere at a pump laser power around 1 mW.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of high-Q optomechanical modes in the mounted silica microspheres

Zhen Shen, Zhong-Hao Zhou, Chang-Ling Zou, Fang-Wen Sun, Guo-Ping Guo, Chun-Hua Dong, and Guang-Can Guo
Photon. Res. 3(5) 243-247 (2015)

Thermo-optomechanical oscillator for sensing applications

Yang Deng, Fenfei Liu, Zayd C. Leseman, and Mani Hossein-Zadeh
Opt. Express 21(4) 4653-4664 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
    [Crossref] [PubMed]
  2. M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
    [Crossref]
  3. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
    [Crossref]
  4. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
    [Crossref] [PubMed]
  5. J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).
  6. Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
    [Crossref]
  7. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
    [Crossref] [PubMed]
  8. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref] [PubMed]
  9. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref] [PubMed]
  10. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009).
    [Crossref]
  11. D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon. 4, 211–217 (2010).
    [Crossref]
  12. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).
  13. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
    [Crossref] [PubMed]
  14. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
    [Crossref]
  15. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
    [Crossref] [PubMed]
  16. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
    [Crossref] [PubMed]
  17. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
    [Crossref] [PubMed]
  18. I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  19. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride optomechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
    [Crossref] [PubMed]
  20. M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
    [Crossref] [PubMed]
  21. W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012).
    [Crossref] [PubMed]
  22. X. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X. Tang, “Ghz optomechanical resonators with high mechanical Q factor in air,” Opt. Express 19, 22316–22321 (2011).
    [Crossref] [PubMed]
  23. T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.
  24. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
    [Crossref] [PubMed]
  25. Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21, 4653–4664 (2013).
    [Crossref] [PubMed]
  26. F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
    [Crossref]
  27. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
    [Crossref] [PubMed]
  28. K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
    [Crossref]
  29. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein absorption,” Opt. Lett. 28, 272–274 (2003).
    [Crossref] [PubMed]

2013 (5)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[Crossref]

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21, 4653–4664 (2013).
[Crossref] [PubMed]

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (6)

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

X. Sun, K. Y. Fong, C. Xiong, W. H. P. Pernice, and H. X. Tang, “Ghz optomechanical resonators with high mechanical Q factor in air,” Opt. Express 19, 22316–22321 (2011).
[Crossref] [PubMed]

S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride optomechanical oscillator,” Opt. Express 19, 24522–24529 (2011).
[Crossref] [PubMed]

2010 (2)

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon. 4, 211–217 (2010).
[Crossref]

2009 (4)

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009).
[Crossref]

2008 (2)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

2006 (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

2005 (2)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

2003 (2)

Alaie, S.

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein absorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Bahl, G.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Bhave, S. A.

Boriskina, S.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Bowen, W. P.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
[Crossref] [PubMed]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

Carmon, T.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Demirel, M.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Deng, Y.

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

Fan, X.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Fong, K. Y.

Forstner, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Grine, A.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Grudinin, I. S.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Grutter, K.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Hajimiri, A.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Harris, G. I.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein absorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Hossein-Zadeh, M.

F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[Crossref]

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013).
[Crossref] [PubMed]

Y. Deng, F. Liu, Z. C. Leseman, and M. Hossein-Zadeh, “Thermo-optomechanical oscillator for sensing applications,” Opt. Express 21, 4653–4664 (2013).
[Crossref] [PubMed]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Hyun Kim, K.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Jiang, W. C.

Jiang, X.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009).
[Crossref]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Khoshsima, M.

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Knittel, J.

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
[Crossref] [PubMed]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Lee, K. H.

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
[Crossref] [PubMed]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

Lee, W.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Leseman, Z. C.

Lin, Q.

W. C. Jiang, X. Lu, J. Zhang, and Q. Lin, “High-frequency silicon optomechanical oscillator with an ultralow threshold,” Opt. Express 20, 15991–15996 (2012).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Liu, F.

Liu, J.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Lu, X.

Maleki, L.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Matsko, A. B.

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

McRae, T. G.

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
[Crossref] [PubMed]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

Nguyen, C.-C.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Pernice, W. H. P.

Prams, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Quack, N.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Rajmangal, R.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Rocheleau, T.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Roels, J.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon. 4, 211–217 (2010).
[Crossref]

Rokhsari, H.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Rosenberg, J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Santiago-Cordoba, M.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

Scherer, A.

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Schneider, R.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Shopova, S. I.

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Sridaran, S.

Sun, X.

Sun, Y.

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Swaim, J. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Szorkovszky, A.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

M. A. Taylor, A. Szorkovszky, J. Knittel, K. H. Lee, T. G. McRae, and W. P. Bowen, “Cavity optoelectromechanical regenerative amplification,” Opt. Express 20, 12742–12751 (2012).
[Crossref] [PubMed]

Tallur, S.

Tang, H. X.

Taylor, M. A.

Teraoka, I.

Thourhout, D. V.

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon. 4, 211–217 (2010).
[Crossref]

Tomes, M.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

Vahala, K. J.

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

van Ooijen, E. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

Vollmer, F.

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in micro-spheres by protein absorption,” Opt. Lett. 28, 272–274 (2003).
[Crossref] [PubMed]

Wu, M.

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

Xiong, C.

Yang, L.

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Zhang, J.

Anal. Bioanal. Chem. (1)

Y. Sun and X. Fan, “Optical ring resonators for biochemical and chemical sensing,” Anal. Bioanal. Chem. 399, 205–211 (2011).
[Crossref]

Appl. Phys. Lett. (3)

M. Santiago-Cordoba, S. Boriskina, F. Vollmer, and M. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701 (2011).
[Crossref]

S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, “Plasmonic enhancement of a whispering-gallery-mode biosensor for single nanoparticle detection,” Appl. Phys. Lett. 98, 243104 (2011).
[Crossref]

J. Knittel, T. G. McRae, K. H. Lee, and W. P. Bowen, “Interferometric detection of mode splitting for whispering gallery mode biosensors,” Appl. Phys. Lett. 97, 1–3 (2010).

IEEE Sensors J. (1)

F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors J. 13, 146–147 (2013).
[Crossref]

Light: Sci. Appl. (1)

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light: Sci. Appl. 2, e110 (2013).
[Crossref]

Nano Lett. (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett. 13, 3347–3351 (2013).
[Crossref] [PubMed]

Nature (2)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009).
[Crossref] [PubMed]

Nature Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[Crossref] [PubMed]

Nature Photon. (2)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nature Photon. 3, 201–205 (2009).
[Crossref]

D. V. Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nature Photon. 4, 211–217 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micromechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Phys. Rev. Lett. (5)

T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, “Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode,” Phys. Rev. Lett. 94, 223902 (2005).
[Crossref] [PubMed]

Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009).
[Crossref] [PubMed]

I. S. Grudinin, A. B. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108, 120801 (2012).
[Crossref] [PubMed]

T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108, 5976–5979 (2011).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref] [PubMed]

Other (2)

T. Rocheleau, A. Grine, K. Grutter, R. Schneider, N. Quack, M. Wu, and C.-C. Nguyen, “Enhancement of mechanical Q for low phase noise optomechanical oscillators,” in “2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),” (2013), pp. 118–121.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” arXiv:1303.0733v1 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experiment setup. In the inset, the laser frequency noise spectrum measured by the reference interferometer (blue trace) was fitted by a sinc-square function (red dashed line). (b) Transmitted optical power as a function of probe laser wavelength detune. At a dropped optical power (defined as the optical power dropped into the cavity) close to the threshold power, the bottom left inset of the plot displayed a sinusoidal spectrum while at a high dropped power the spectrum displayed in the right inset of the plot was distorted by the high order harmonics. (c) Transmitted signal vs optical frequency detune (blue trace). The laser frequency was calibrated through the transmitted signal of the reference interferometer (green trace). The red dashed lines are least square fitting results.

Fig. 2
Fig. 2

(a) RF spectra at dropped power of 1.1 mW, 1 mW and 0.4 mW, least square fittings to the Lorentzian function indicate the linewidths of the optomechanical tones to be 232 Hz, 61 kHz and 269 kHz respectively. In the main plot, each spectrum was averaged over 100 spectral traces collected seamlessly at the same drop power level. The inset is the spectrum of single trace measurement. (b) In a separate measurement, as high as 24-th order harmonics was observed in a frequency span of 10 MHz. The dropped optical power is 2.6 mW. The inset further displayed the spectrum with a frequency span set at 1 MHz.

Fig. 3
Fig. 3

(a) Mechanical energy (normalized to the maximum value) as a function of the dropped power, a linear fit to the above threshold value shows a threshold power of 0.98 mW. The peak frequency as a function of the dropped power is displayed in the inset and a linear extrapolation predicts an intrinsic mechanical frequency of 198.7 kHz. (b) Mechanical linewidth vs dropped power indicates an intrinsic mechanical linewidth of 431 kHz and a mechanical quality factor of Qm = 0.5 through linear extrapolation. Spectrogram of the optomechanical oscillation plotted in the inset indicates a 130 Hz standard deviation of the oscillation peak over a time span of 392 ms (The black line overlapped with the spectrogram is the peak frequency of the spectra calculated by the least square fitting).

Metrics