Abstract

The photoluminescent-(PL)-properties of Pr3+-ions in indium-containing selenide-chalcogenide bulk-glasses are found to be superior when compared with gallium-containing analogues. We observe circa doubling of mid-infrared (MIR) PL intensity from 3.5 to 6 μm for bulk glasses, pumped at 1.55 μm wavelength, and an increased excited state lifetime at 4.7 μm. PL is reported in optically-clad fiber. Ga addition is well known to enhance RE3+ solubility and PL behavior, and is believed to form ([RE3+]-Se-[Ga(III)]) in the glasses. Indium has the same outer electronic-structure as gallium for solvating the RE-ions. Moreover, indium is heavier and promotes lower phonon energy locally around the RE-ion, thereby enhancing the RE-ion PL behavior, as observed here.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass

Zhuoqi Tang, David Furniss, Michael Fay, Hesham Sakr, Lukasz Sójka, Nigel Neate, Nicola Weston, Slawomir Sujecki, Trevor M. Benson, and Angela B. Seddon
Opt. Mater. Express 5(4) 870-886 (2015)

Mid-infrared emission in Tb3+-doped selenide glass fiber

L. Sojka, Z. Tang, D. Furniss, H. Sakr, Y. Fang, E. Beres-Pawlik, T. M. Benson, A. B. Seddon, and S. Sujecki
J. Opt. Soc. Am. B 34(3) A70-A79 (2017)

Er3+ doped and Er3+/Pr3+ co-doped gallium-antimony-sulphur chalcogenide glasses for infrared applications

Ge Li, Lini Li, Xinyu Huang, Junzhou Tang, Shixun Dai, Guoxiang Wang, Tiefeng Xu, and Qing Jiao
Opt. Mater. Express 6(12) 3849-3856 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “A Prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
    [Crossref]
  2. A. B. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
    [Crossref]
  3. J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31(15), 1250–1251 (1995).
    [Crossref]
  4. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  5. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
    [Crossref]
  6. B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
    [Crossref]
  7. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
    [Crossref]
  8. A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
    [Crossref] [PubMed]
  9. S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  10. J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
    [Crossref]
  11. G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  12. Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
    [Crossref]
  13. Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
    [Crossref]
  14. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
    [Crossref]
  15. D. R. Simons, A. J. Faber, and H. de Waal, “Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 µm,” Opt. Lett. 20(5), 468–470 (1995).
    [Crossref] [PubMed]
  16. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
    [Crossref]
  17. M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
    [Crossref]
  18. L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
    [Crossref] [PubMed]
  19. L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
    [Crossref]
  20. B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
    [Crossref]
  21. F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
    [Crossref]
  22. L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
    [Crossref]
  23. H. Sakr, Z. Tang, D. Furniss, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber,” in Optical Fibers and Sensors for Med. Diag. and Treatment Applications XIV, 89380V, Proc. SPIE 89380, 8938 (2014).
  24. B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
    [Crossref]
  25. B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.
  26. P. Petkov, “Thin indium containing chalcogenide films for sensor applications,” Advances on Natural Science: Theory and Applications 1(2), 143–145 (2012).
  27. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
    [Crossref]
  28. D. Furniss and A. B. Seddon, Principles and Applications of Thermal Analysis, Ed. Paul Gabbott, (Blackwells, 2007), Chap. 10.
  29. K. Jinguji, M. Horiguchi, and T. Manabe, “Spectral loss measurement system for IR optical fibers,” Appl. Opt. 21(4), 571–572 (1982).
    [Crossref] [PubMed]
  30. P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
    [Crossref]
  31. H. Dieke and H. M. Crosswhite, “The spectra of the doubly and triply ionized rare earth,” Appl. Opt. 2(7), 675–686 (1963).
    [Crossref]
  32. M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
    [Crossref]
  33. T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
    [Crossref]
  34. T. Doert and C. Graf, “Synthese und Kristallstrukturen von PrSe2 und NdSe2,” Z. Anorg. Allg. Chem. 631(6-7), 1101–1106 (2005).
    [Crossref]
  35. J. S. Sanghera and I. D. Aggarwal, eds., Infrared Fiber Optics (CRC Press LLC, Washington DC, 1998).

2014 (1)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

2013 (2)

A. B. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

2012 (4)

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

P. Petkov, “Thin indium containing chalcogenide films for sensor applications,” Advances on Natural Science: Theory and Applications 1(2), 143–145 (2012).

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

2011 (2)

A. B. Seddon, “A Prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

2010 (1)

2009 (2)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2008 (2)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

2007 (1)

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

2005 (1)

T. Doert and C. Graf, “Synthese und Kristallstrukturen von PrSe2 und NdSe2,” Z. Anorg. Allg. Chem. 631(6-7), 1101–1106 (2005).
[Crossref]

2003 (1)

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

2001 (1)

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

1999 (2)

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[Crossref]

1997 (1)

1996 (1)

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

1995 (5)

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

D. R. Simons, A. J. Faber, and H. de Waal, “Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 µm,” Opt. Lett. 20(5), 468–470 (1995).
[Crossref] [PubMed]

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

1994 (1)

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

1989 (1)

P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
[Crossref]

1982 (1)

1963 (1)

Abriel, W.

P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
[Crossref]

Aggarwal, I. D.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref] [PubMed]

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

Ahn, J. T.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Aitken, B. G.

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[Crossref]

Belin, S.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Benson, T. M.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Beres-Pawlik, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Bureau, B.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Camy, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Carrillo-Cabrera, W.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

Charpentier, F.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Cheng, Y.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Choi, Y. G.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Chung, W. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Churbanov, M. F.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

Cole, B.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref] [PubMed]

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

Crosswhite, H. M.

Dantanarayana, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

de Waal, H.

Dianov, E. M.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Dieke, H.

Doert, T.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

T. Doert and C. Graf, “Synthese und Kristallstrukturen von PrSe2 und NdSe2,” Z. Anorg. Allg. Chem. 631(6-7), 1101–1106 (2005).
[Crossref]

Doualan, J. L.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Faber, A. J.

Faber, E.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Fujiura, K.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Furniss, D.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Galagan, I. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Graf, C.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

T. Doert and C. Graf, “Synthese und Kristallstrukturen von PrSe2 und NdSe2,” Z. Anorg. Allg. Chem. 631(6-7), 1101–1106 (2005).
[Crossref]

Harbison, B.

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

Harbison, B. B.

Heo, J.

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

Horiguchi, M.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jeon, D. Y.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Jinguji, K.

Jóvári, P.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Kanamori, T.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Kryukova, E. B.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Machewirth, D. P.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

Manabe, T.

Miklos, R.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Mori, A.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Mossadegh, R.

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

Nazabal, V.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Neate, N. C.

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

Ohishi, Y.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Oladeji, A.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Park, B. J.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Petkov, P.

P. Petkov, “Thin indium containing chalcogenide films for sensor applications,” Advances on Natural Science: Theory and Applications 1(2), 143–145 (2012).

Plambech-Fischer, P.

P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
[Crossref]

Plotnichenko, V. G.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Ponader, C. W.

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[Crossref]

Pureza, P. C.

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

Pyrkov, Y. N.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Sakr, H.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Sanghera, J.

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

Sanghera, J. S.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref] [PubMed]

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Schmidt, P.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

Schneider, J.

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

Scripachev, I. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Seddon, A. B.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

A. B. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

A. B. Seddon, “A Prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Seo, H. S.

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

Shaw, B. H.

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

Shaw, L. B.

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

L. B. Shaw, B. B. Harbison, B. Cole, J. S. Sanghera, and I. D. Aggarwal, “Spectroscopy of the IR transitions in Pr3+ doped heavy metal selenide glasses,” Opt. Express 1(4), 87–96 (1997).
[Crossref] [PubMed]

Shin, Y. B.

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

Shiryaev, V. S.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Sigel, G. H.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

Simon, P.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

Simons, D. R.

Smetanin, S. V.

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

Snitzer, E.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

Snopatin, G. E.

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Sójka, L.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Starecki, F.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Sudo, S.

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Sujecki, S.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Tang, Z.

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

L. Sójka, Z. Tang, H. Zhu, E. Bereś-Pawlik, A. B. Seddon, T. M. Benson, and S. Sujecki, “Study of mid-infrared laser action in chalcogenide rare earth doped glass with Dy3+, Pr3+ and Tb3+,” Opt. Mater. Express 2(11), 1632–1640 (2012).
[Crossref]

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, and T. M. Benson, “Progress in rare-earth-doped mid-infrared fiber lasers,” Opt. Express 18(25), 26704–26719 (2010).
[Crossref] [PubMed]

Troles, J.

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Urland, W.

P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
[Crossref]

Vasilieva, I. G.

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

Wei, K.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

Wenzel, J.

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

Zhu, H.

Advances on Natural Science: Theory and Applications (1)

P. Petkov, “Thin indium containing chalcogenide films for sensor applications,” Advances on Natural Science: Theory and Applications 1(2), 143–145 (2012).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, “Fabrication of praseodymium doped arsenic sulfide chalcogenide fiber for 1.3µm fiber amplifier,” Appl. Phys. Lett. 65(1), 13–15 (1994).
[Crossref]

Electron. Lett. (1)

J. Schneider, “Fluoride fiber laser operating at 3.9 μm,” Electron. Lett. 31(15), 1250–1251 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based MIR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

Inorg. Mater. (1)

G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, E. M. Dianov, and M. F. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Int. J. Appl. Glass Sci. (1)

A. B. Seddon, “A Prospective for new mid-infrared medical endoscopy using chalcogenide glasses,” Int. J. Appl. Glass Sci. 2(3), 177–191 (2011).
[Crossref]

J. Am. Ceram. Soc. (1)

Y. Cheng, Z. Tang, N. C. Neate, D. Furniss, T. M. Benson, and A. B. Seddon, “The influence of dysprosium addition on the crystallization behavior of a chalcogenide selenide glass close to the fiber drawing temperature,” J. Am. Ceram. Soc. 95(12), 3834–3841 (2012).
[Crossref]

J. Lumin. (1)

B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, D. Y. Jeon, and W. J. Chung, “Mid-infrared (3.5–5.5 µm) spectroscopic properties of Pr3+-doped Ge–Ga–Sb–Se glasses and optical fibers,” J. Lumin. 128(10), 1617–1622 (2008).
[Crossref]

J. Mater. Sci. Lett. (1)

B. Cole, L. B. Shaw, P. C. Pureza, R. Miklos, J. S. Sanghera, and I. D. Aggarwal, “Core/clad selenide glass fiber doped with Pr3+ for active MIR applications,” J. Mater. Sci. Lett. 20(5), 465–467 (2001).
[Crossref]

J. Non-Cryst. Solids (9)

K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel., “Pr3+- doped Ge-Ga-S glasses for 1.3 µm optical fiber amplifier,” J. Non-Cryst. Solids 182(3), 257–261 (1995).
[Crossref]

M. F. Churbanov, I. V. Scripachev, V. S. Shiryaev, V. G. Plotnichenko, S. V. Smetanin, E. B. Kryukova, Y. N. Pyrkov, and I. B. Galagan, “Chalcogenide glasses doped with Tb, Dy and Pr ions,” J. Non-Cryst. Solids 326-327, 301–305 (2003).
[Crossref]

B. Cole, L. B. Shaw, P. C. Pureza, R. Mossadegh, J. S. Sanghera, and I. D. Aggarwal, “Rare earth doped selenide glasses and fibers for active applications in the near and MIR,” J. Non-Cryst. Solids 256-257, 253–259 (1999).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184, 44–50 (1995).
[Crossref]

Z. Tang, N. C. Neate, D. Furniss, S. Sujecki, T. M. Benson, and A. B. Seddon, “Crystallisation behavior of Dy3+-doped selenide glasses,” J. Non-Cryst. Solids 357(11-13), 2453–2462 (2011).
[Crossref]

J. Heo and Y. B. Shin, “Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses,” J. Non-Cryst. Solids 196, 162–167 (1996).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

B. G. Aitken and C. W. Ponader, “Physical properties and Raman spectroscopy of GeAs sulfide glasses,” J. Non-Cryst. Solids 256-257, 143–148 (1999).
[Crossref]

M. F. Churbanov, “High-purity chalcogenide glasses as materials for fiber optics,” J. Non-Cryst. Solids 184, 25–29 (1995).
[Crossref]

J. Solid State Chem. (2)

T. Doert, C. Graf, P. Schmidt, I. G. Vasilieva, P. Simon, and W. Carrillo-Cabrera, “The Pr2Se3-PrSe2 system: Studies of the phase relationships and the modulated crystal structure of PrSe1.85,” J. Solid State Chem. 180(2), 496–509 (2007).
[Crossref]

P. Plambech-Fischer, W. Abriel, and W. Urland, “Preparation and crystal structure of RESe1.9 (RE =Ce, Pr),” J. Solid State Chem. 78(1), 164–169 (1989).
[Crossref]

Mater. Lett. (1)

F. Charpentier, F. Starecki, J. L. Doualan, P. Jóvári, P. Camy, J. Troles, S. Belin, B. Bureau, and V. Nazabal, “MIR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers,” Mater. Lett. 101, 21–24 (2013).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fiber laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

L. Sójka, Z. Tang, D. Furniss, H. Sakr, A. Oladeji, E. Bereś-Pawlik, H. Dantanarayana, E. Faber, A. B. Seddon, T. M. Benson, and S. Sujecki, “Broadband, mid-infrared emission from Pr3+ doped GeAsGaSe chalcogenide fiber, optically clad,” Opt. Mater. 36(6), 1076–1082 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Status Solidi B (1)

A. B. Seddon, “Mid-infrared (IR) – A hot topic: The potential for using mid-IR light for non-invasive early detection of skin cancer in vivo,” Phys. Status Solidi B 250(5), 1020–1027 (2013).
[Crossref]

Z. Anorg. Allg. Chem. (1)

T. Doert and C. Graf, “Synthese und Kristallstrukturen von PrSe2 und NdSe2,” Z. Anorg. Allg. Chem. 631(6-7), 1101–1106 (2005).
[Crossref]

Other (4)

J. S. Sanghera and I. D. Aggarwal, eds., Infrared Fiber Optics (CRC Press LLC, Washington DC, 1998).

B. Cole, J. Sanghera, B. H. Shaw, B. Harbison, I. D. Aggarwal, and US Patent 6128429, (2000), “Low phonon energy glass and fiber doped with rare earth”.

D. Furniss and A. B. Seddon, Principles and Applications of Thermal Analysis, Ed. Paul Gabbott, (Blackwells, 2007), Chap. 10.

H. Sakr, Z. Tang, D. Furniss, L. Sojka, N. A. Moneim, E. Barney, S. Sujecki, T. M. Benson, and A. B. Seddon, “Towards mid-infrared fiber-lasers: rare earth ion doped, indium-containing, selenide bulk glasses and fiber,” in Optical Fibers and Sensors for Med. Diag. and Treatment Applications XIV, 89380V, Proc. SPIE 89380, 8938 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical micrographs of a “best cleave” for the cut-back measurement of the optical loss spectrum of: (a) the 498 ppmw Pr3+-In-SIF and (b) the 493 ppmw Pr3+-Ga-SIF.

Fig. 2
Fig. 2

XRD patterns of: (a) zero, 493, 994, 1476 and 2050 ppmw Pr3+-Ga series bulk glasses, suggesting that the zero - 1476 ppmw Pr3+-Ga bulk glasses were amorphous and (b) zero, 527, 1027, 1473 and 2034 ppmw Pr3+-In series bulk glasses, suggesting that the zero - 1027 ppmw Pr3+ -In bulk glasses were amorphous. Patterns have been vertically shifted and sharp Bragg peaks associated with crystallization circled for convenience.

Fig. 3
Fig. 3

FT-IR absorption coefficients in the 2 - 11 µm wavelength-range of undoped GeAsGaSe and GeAsInSe bulk, host-glass showing impurity vibrational absorption in the optical window. The sloping baseline trend mainly reflects the surface finish of the glasses; the significance of surface-defect scattering diminished with increasing wavelength. Despite purging, atmospheric vibrational absorption in the optical-path was responsible for absorption at 4.2 µm [CO2] and at least part of the absorption at 2.9 μm [H2O] and 6.3 µm [H2O]. The proposed band identities are indicated; bands marked ‘?’ are still under investigation.

Fig. 4
Fig. 4

A simplified energy-level diagram of isolated Pr3+ ions with absorptive transitions of interest here, which were identified from [31] and are in broad agreement with [18], together with potential longer-wavelength radiative transitions.

Fig. 5
Fig. 5

(a) FT-IR spectra of 527 ppmw Pr3+-In and 493 ppmw Pr3+ -Ga bulk glass samples, showing the 1.48, 1.57 and 2.0 µm Pr3+ electronic absorption bands due to ground state absorption to levels 3F4, 3F3 and 3F2, respectively [Fig. 4]. The spectral baselines were numerically removed. (b) Beer-Lambert plots of the 1.48, 1.57 and 2.0 µm Pr3+ electronic absorption bands from the ground state for the zero to 1476 ppmw Pr3+-Ga series glasses and zero to 1473 ppmw Pr3+-In series glasses. Note: (i) the 1.48 µm and 1.57 µm bands overlapped and were deconvoluted arbitrarily at their point of intersection; (ii) the 4.5µm band [Fig. 4(a)] was neglected due to a varying [H-Se] impurity vibrational absorption contribution [c.f. Fig. 3] and (iii) maximum errors were: ± 30 ppmw and ± 0.0003 cm−1 μm.

Fig. 6
Fig. 6

Fiber optical loss spectrum of 493 ppmw Pr3+-Ga-SIF and 498 ppmw Pr3+-In-SIF, in the range 1 – 9 µm. Fiber OD was ~300 µm and there was a 15-30 µm thick optical cladding.

Fig. 7
Fig. 7

PL emission of bulk glasses: (a) 493 ppmw Pr3+ -Ga and 527 ppmw Pr3+-In and (b) as (a) but with both plots normalized at their peak to 1.

Fig. 8
Fig. 8

PL emission spectra of bulk glasses: (a) 994 ppmw Pr3+-Ga and 1027 ppmw Pr3+-In bulk glasses and (b) as (a) but peaks normalized to 1.

Fig. 9
Fig. 9

Normalized PL spectra of 493 ppmw Pr3+-GeAsGaSe / GeAsGaSe SIF and 498 ppmw Pr3+-GeAsInSe / GeAsInSe SIF, each pumped at 1550 nm.

Fig. 10
Fig. 10

(a) Overlap of the absorption and emission bands at 4680 nm band for the 493 ppmw Pr3+ -Ga bulk glass and emission of 493 ppmw Pr3+-Ga-SIF. The absorption and emission bands have been normalized to give a peak response of 1. (b) Similar overlap of the absorption and emission bands at 4680 nm for the 527 ppmw Pr3+-In bulk glass together with emission from 498 ppmw Pr3+-In-SIF. The absorption and emission bands have been normalized to give a peak response of 1.

Fig. 11
Fig. 11

PL decay at 4700 nm for pumping at 1550nm and nominally 57.8mW of: (a) 527 ppmw Pr3+-In and 493 ppmw Pr3+-Ga bulk glasses and (b) 1027 ppmw Pr3+-In and 994 ppmw Pr3+-Ga bulk glasses. For (a) and (b), single exponential decays are plotted to allow comparison.

Tables (1)

Tables Icon

Table 1 Correlation coefficients (R2) of the Lambert-Beer Law line fit shown in Fig. 5(b) for zero to 994 Pr3+ - GeAsGaSe and zero to 1027 Pr3+ -GeAsInSe bulk glasses.

Metrics