Abstract

A scalable analog-to-digital converter based on polychromatic sampling and optical-domain frequency referencing is described. The new architecture relies on low-distortion replication of an optical signal to spectrally distinct copies and subsequent polychromatic parametric sampling. Frequency comb referencing of parametric replication and sampling was used to convert processor distortions into quasi-stationary impairments and enable a practical equalization implementation. The operation of the new digitizer was demonstrated at 30 GS/s, achieving 6.5 effective number of bits in the first Nyquist zone. In contrast to conventional analog-to-digital converters, the new preprocessor sampling bandwidth is not restricted to the first Nyquist zone, and can operate in the second and third Nyquist zones beyond 40 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear cross-talk mitigation in polychromatic parametric sampling gate

Vahid Ataie, Andreas O. J. Wiberg, Nikola Alic, and Stojan Radic
Opt. Express 21(4) 4145-4154 (2013)

Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source

Andreas O. J. Wiberg, Lan Liu, Zhi Tong, Evgeny Myslivets, Vahid Ataie, Bill P.-P. Kuo, Nikola Alic, and Stojan Radic
Opt. Express 20(26) B419-B427 (2012)

Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter

Guang Yang, Weiwen Zou, Lei Yu, Kan Wu, and Jianping Chen
Opt. Express 24(21) 24061-24074 (2016)

References

  • View by:
  • |
  • |
  • |

  1. I. Dedic, “56 GS/s ADC: Enabling 100GbE,” in Optical Fiber Communication Conference (OFC) (2010), paper OThT6.
    [Crossref]
  2. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
    [Crossref]
  4. R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
    [Crossref]
  5. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
    [Crossref] [PubMed]
  6. A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
    [Crossref]
  7. P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
    [Crossref]
  8. F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
    [Crossref]
  9. M. Sköld, M. Westlund, H. Sunnerud, and P. A. Andrekson, 100 GSample/s optical real-time sampling system with Nyquist-limited bandwidth,” in Proc. 33rd European Conference and Exhibition (ECOC’07), Berlin, Germany, Sep. (2007), paper PD1.1.
  10. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
    [Crossref]
  11. D. J. Esman, A. O. Wiberg, E. Temprana, Y. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “A fully frequency referenced parametric polychromatically sampled analog-to-digital conversion,” in Optical Fiber Communication Conference (OFC) (2014), paper TH3D.4.
    [Crossref]
  12. IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Std 1241–2000, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA (2001).
  13. C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
    [Crossref]
  14. A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
    [Crossref]
  15. A. O. J. Wiberg, C.-S. Bres, B. P. Kuo, J. M. C Boggio, N. Alic, and S. Radic, “Polychromatic sampling for high-speed real-time processing,” in Optical Fiber Communication (OFC), paper OWB1 (2010).
  16. A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference (OFC) (2012), paper OW3C.2.
    [Crossref]
  17. J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distribution,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
    [Crossref]
  18. B. P. P. Kuo, E. Myslivets, V. Ataie, E. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
    [Crossref]
  19. C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
    [Crossref]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).
  21. A. O. J. Wiberg, Z. Tong, L. Liu, E. Myslivets, N. Alic, and S. Radic, “Chirp optimization of pulsed parametric amplifier,” in CLEO: Science and Innovations (2013), paper CM2L.7.
  22. R. Reeder, M. Looney, and J. Hand, “Pushing the state of the art with multichannel A/D converters,” Analog Dialogue 39, 5 (2005).
  23. F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
    [Crossref]
  24. V. Ataie, A. O. J. Wiberg, N. Alic, and S. Radic, “Nonlinear cross-talk mitigation in polychromatic parametric sampling gate,” Opt. Express 21(4), 4145–4154 (2013).
    [Crossref] [PubMed]

2013 (2)

2012 (1)

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

2011 (1)

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

2009 (2)

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15(5), 1955–1982 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2001 (1)

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

1999 (2)

F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

1991 (1)

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
[Crossref]

1973 (1)

C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Alic, N.

V. Ataie, A. O. J. Wiberg, N. Alic, and S. Radic, “Nonlinear cross-talk mitigation in polychromatic parametric sampling gate,” Opt. Express 21(4), 4145–4154 (2013).
[Crossref] [PubMed]

B. P. P. Kuo, E. Myslivets, V. Ataie, E. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Ataie, V.

Betts, G.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Bhushan, A. S.

F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Boggio, J. M. C.

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

J. M. C. Boggio, J. D. Marconi, and H. L. Fragnito, “Experimental and numerical investigation of the SBS-threshold increase in an optical fiber by applying strain distribution,” J. Lightwave Technol. 23(11), 3808–3814 (2005).
[Crossref]

Brès, C.-S.

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Buczek, C.

C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[Crossref]

Coppinger, F. A.

F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Danicic, A.

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

Fragnito, H. L.

Freiberg, R. J.

C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Hand, J.

R. Reeder, M. Looney, and J. Hand, “Pushing the state of the art with multichannel A/D converters,” Analog Dialogue 39, 5 (2005).

Hargreaves, J. J.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Hummels, D. M.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
[Crossref]

Irons, F. H.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
[Crossref]

Jalali, B.

F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

Juodawlkis, P. W.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Kennedy, S. P.

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
[Crossref]

Kuo, B. P. P.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

Kuo, B. P.-P.

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Looney, M.

R. Reeder, M. Looney, and J. Hand, “Pushing the state of the art with multichannel A/D converters,” Analog Dialogue 39, 5 (2005).

Marconi, J. D.

Myslivets, E.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[Crossref]

O’Donnell, F. J.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Radic, S.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightwave Technol. 31(21), 3414–3419 (2013).
[Crossref]

V. Ataie, A. O. J. Wiberg, N. Alic, and S. Radic, “Nonlinear cross-talk mitigation in polychromatic parametric sampling gate,” Opt. Express 21(4), 4145–4154 (2013).
[Crossref] [PubMed]

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

Ray, K. G.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Reeder, R.

R. Reeder, M. Looney, and J. Hand, “Pushing the state of the art with multichannel A/D converters,” Analog Dialogue 39, 5 (2005).

Seeds, A. J.

Skolnick, M. L.

C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Temprana, E.

Twichell, J. C.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Valley, G. C.

Walden, R. H.

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

Wasserman, J. L.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Wiberg, A. O. J.

V. Ataie, A. O. J. Wiberg, N. Alic, and S. Radic, “Nonlinear cross-talk mitigation in polychromatic parametric sampling gate,” Opt. Express 21(4), 4145–4154 (2013).
[Crossref] [PubMed]

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

Williams, K. J.

Williamson, R. C.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Younger, R. D.

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

Analog Dialogue (1)

R. Reeder, M. Looney, and J. Hand, “Pushing the state of the art with multichannel A/D converters,” Analog Dialogue 39, 5 (2005).

IEEE J. Sel. Areas Commun. (1)

R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron. 18(2), 670–680 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

A. O. J. Wiberg, C.-S. Brès, B. P. P. Kuo, J. M. C. Boggio, N. Alic, and S. Radic, “Multicast parametric synchronous sampling of 320-Gb/s return-to-zero signal,” IEEE Photon. Technol. Lett. 21(21), 1612–1614 (2009).
[Crossref]

C.-S. Brès, A. O. J. Wiberg, B. P.-P. Kuo, N. Alic, and S. Radic, “Wavelength multicasting of 320Gb/s channel in self-seeded parametric amplifier,” IEEE Photon. Technol. Lett. 21(14), 1002–1004 (2009).
[Crossref]

A. O. J. Wiberg, C.-S. Brès, E. Myslivets, A. Danicic, and S. Radic, “Performance of self-seeded parametric multicasting of analog signals,” IEEE Photon. Technol. Lett. 23(21), 1570–1572 (2011).
[Crossref]

IEEE Trans. Circuits Syst. (1)

F. H. Irons, D. M. Hummels, and S. P. Kennedy, “Improved compensation for analog-to-digital converters,” IEEE Trans. Circuits Syst. 38(8), 958–961 (1991).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

P. W. Juodawlkis, J. C. Twichell, G. Betts, J. J. Hargreaves, R. D. Younger, J. L. Wasserman, F. J. O’Donnell, K. G. Ray, and R. C. Williamson, “Optically sampled analog-to-digital converters,” IEEE Trans. Microw. Theory Tech. 49(10), 1840–1853 (2001).
[Crossref]

F. A. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech. 47(7), 1309–1314 (1999).
[Crossref]

J. Lightwave Technol. (3)

Nat. Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photon. 1(6), 319–330 (2007).
[Crossref]

Opt. Express (2)

Proc. IEEE (1)

C. Buczek, M. L. Skolnick, and R. J. Freiberg, “Laser injection locking,” Proc. IEEE 61(10), 1411–1431 (1973).
[Crossref]

Other (8)

G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).

A. O. J. Wiberg, Z. Tong, L. Liu, E. Myslivets, N. Alic, and S. Radic, “Chirp optimization of pulsed parametric amplifier,” in CLEO: Science and Innovations (2013), paper CM2L.7.

M. Sköld, M. Westlund, H. Sunnerud, and P. A. Andrekson, 100 GSample/s optical real-time sampling system with Nyquist-limited bandwidth,” in Proc. 33rd European Conference and Exhibition (ECOC’07), Berlin, Germany, Sep. (2007), paper PD1.1.

A. O. J. Wiberg, C.-S. Bres, B. P. Kuo, J. M. C Boggio, N. Alic, and S. Radic, “Polychromatic sampling for high-speed real-time processing,” in Optical Fiber Communication (OFC), paper OWB1 (2010).

A. O. J. Wiberg, Z. Tong, L. Liu, J. L. Ponsetto, V. Ataie, E. Myslivets, N. Alic, and S. Radic, “Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing,” in Optical Fiber Communication Conference (OFC) (2012), paper OW3C.2.
[Crossref]

I. Dedic, “56 GS/s ADC: Enabling 100GbE,” in Optical Fiber Communication Conference (OFC) (2010), paper OThT6.
[Crossref]

D. J. Esman, A. O. Wiberg, E. Temprana, Y. Myslivets, P. P. Kuo, N. Alic, and S. Radic, “A fully frequency referenced parametric polychromatically sampled analog-to-digital conversion,” in Optical Fiber Communication Conference (OFC) (2014), paper TH3D.4.
[Crossref]

IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Std 1241–2000, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the parametric ADC preprocessor architecture using two dedicated mixers. Input signal is copied to new optical carriers that were mutually delayed. Spectral replicas are simultaneously sampled in a single, polychromatic parametric gate. Sampled copies are routed by a passive wavelength demultiplexer and digitized by a sub-rate, electric ADC.

Fig. 2
Fig. 2

Experimental setup. SL: Slave laser diode; MZM: Mach-Zehnder modulator, PM: Phase modulator, EDFA: Erbium doped fiber amplifier, WDM: Wavelength division multiplexer, HNLF: Highly nonlinear fiber, DCF: Dispersion compensating fiber, PD: Photodiode, BPF: Bandpass filter, LP: Low pass filter. Inset: Spectra of the reference comb and selected comb lines for injection locking.

Fig. 3
Fig. 3

(a) Optical spectra of the input and output of the low noise, high efficiency EDFA. (b) Power characteristic of low noise, high efficiency EDFA driving the polychromatic parametric gate.

Fig. 4
Fig. 4

(a) Optical spectra of pumps and signal before and at the output of the multicast fiber. (b) Spectra of the polychromatic sampling gate with the pump on and off, and idlers after filtering.

Fig. 5
Fig. 5

FFT of the three sampling channels of a 9.01 GHz before (a,c,e) and after 3D-LUT correction (b,d,f). FFT of the three channels interleaved before (g) and after correction (h).

Fig. 6
Fig. 6

FFT of captured subrate traces at the interleaved sampling rate of 30 GS/s with input frequencies (a) 9.01 GHz, (b) 19.01 GHz, (c) 29.01 GHz and (d) 39.01 GHz.

Fig. 7
Fig. 7

(a) The ENOB and SINAD as a function of sampled signal frequency. (b) The SNR1Hz and single tone dynamic range as a function of sampled signal frequency.

Metrics