Abstract

In this paper, we investigate the nonlinear Raman crosstalk in RF-video overlay time and wavelength division multiplexed passive optical network (TWDM-PON), and propose a novel spectrum-reshaping method based on dicode coding to mitigate this crosstalk. The dicode coding features ultra-low power spectral density in the low frequency region, which can reduce the nonlinear Raman crosstalk on the RF-video signal effectively. Experimental results show that, compared with traditional non-return-to-zero on-off keying (NRZ-OOK) signals, the crosstalk on RF-video signal can be reduced by 10 ~14 dB when the launch power per TWDM-PON channel varies from 10-dBm to 15-dBm. The transmission of 10-Gb/s dicode signal over 20-km standard single mode fiber (SSMF) is also demonstrated with the receiver sensitivity of −31 dBm at bit error ratio (BER) of 3.8e-3.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
10  Gbit/s Delay Modulation Using a Directly Modulated DFB Laser for a TWDM PON With Converged Services [Invited]

Ning Cheng, Min Zhou, and Frank J. Effenberger
J. Opt. Commun. Netw. 7(1) A87-A96 (2015)

Spectrally Efficient Enhanced-Performance Bidirectional Coherent PON With Laserless 10  Gb/s ONU [Invited]

A. Shahpari, R. S. Luís, V. Ribeiro, J. D. Reis, R. Ferreira, J. M. D. Mendinueta, Z. Vujicic, B. J. Puttnam, M. Lima, N. Wada, and A. Teixeira
J. Opt. Commun. Netw. 7(3) A403-A413 (2015)

References

  • View by:
  • |
  • |
  • |

  1. ITU-T recommendation G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements,” 2013.
  2. ITU-T recommendation G.989.2(draft), “40-Gigabit-capable passive optical networks: Physical media dependent layer specification,” 2013.
  3. Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Proc. OFC 2012, paper PDP5D.7.
    [Crossref]
  4. R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.19.
    [Crossref]
  5. Y. R. Shen, Principles of Nonlinear Optics (Wiley-Interscience, 1984).
  6. V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Proc. OFC 2014, paper M3I.2.
    [Crossref]
  7. F. Coppinger, L. Chen, and D. Piehler, “Nonlinear Raman Cross-Talk in a Video Overlay Passive Optical Network,” in Proc. OFC 2003, paper TuR5.
    [Crossref]
  8. F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
    [Crossref]
  9. H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
    [Crossref]
  10. N. Cheng and M. Zhou, Litvin, Kerry Effenberger, Frank, “Delay Modulation for TWDM PONs,” in Proc. OFC 2014, paper W1D.3.
  11. A. Tanaka, N. Cvijetic, and T. Wang, “Beyond 5dB Nonlinear Raman Crosstalk Reduction via PSD Control of 10Gb/s OOK in RF-Video Coexistence Scenarios for Next-Generation PON,” in Proc. OFC 2014, paper M3I.3.
    [Crossref]
  12. A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-Generation PONs impact on Video Overlay,” in Proc. ECOC 2013, paper Tu.3.F.3.
    [Crossref]
  13. D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
    [Crossref]
  14. A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
    [Crossref]
  15. Q. Guo and A. V. Tran, “Combined utilization of partial-response coding and equalization for high-speed WDM-PON with centralized lightwaves,” Opt. Express 20(27), 27981–27991 (2012).
    [Crossref] [PubMed]
  16. H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
    [Crossref]
  17. B. Colella, F. J. Effenberger, C. Shimer, and F. Tian, “Raman Crosstalk Control in Passive Optical Networks,” in Proc. OFC 2006, paper NWD6.
    [Crossref]
  18. P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE. Trans. Commun. 23(9), 921–934 (1975).
    [Crossref]
  19. M. Bi, S. Xiao, H. He, L. Yi, Z. Li, J. Li, X. Yang, and W. Hu, “Simultaneous DPSK demodulation and chirp management using delay interferometer in symmetric 40-Gb/s capability TWDM-PON system,” Opt. Express 21(14), 16528–16535 (2013).
    [Crossref] [PubMed]
  20. ITU -T Recommendation G.975.1, 2004, Appendix I.9.

2014 (1)

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

2013 (1)

2012 (1)

2007 (1)

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
[Crossref]

2004 (1)

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

2001 (1)

H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
[Crossref]

1995 (1)

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

1975 (1)

P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE. Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Bi, M.

Bodtker, E.

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

Bowler, D.

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

Capriata, S.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.19.
[Crossref]

Chung, Y. C.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
[Crossref]

H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
[Crossref]

Colella, B.

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

Curri, V.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.19.
[Crossref]

Gaudino, R.

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.19.
[Crossref]

Guo, Q.

Han, K. H.

H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
[Crossref]

He, H.

Hu, W.

Hui, R.

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

Jacobsen, G.

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

Jun, S. B.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
[Crossref]

Kabal, P.

P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE. Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Kim, H.

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
[Crossref]

H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
[Crossref]

Li, A.

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

Li, J.

Li, Z.

Mahon, C. J.

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

Pasupathy, S.

P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE. Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Piehler, D.

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

Tian, F.

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

Tran, A. V.

Wang, Z.

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

Xiao, S.

Yang, X.

Yi, L.

Electron. Lett. (2)

D. Piehler, “Minimising nonlinear Raman crosstalk in future network overlays on legacy passive optical networks,” Electron. Lett. 50(9), 687–688 (2014).
[Crossref]

A. Li, C. J. Mahon, Z. Wang, G. Jacobsen, and E. Bodtker, “Experimental confirmation of crosstalk due to stimulated Raman scattering in WDM AM-VSB CATV transmission systems,” Electron. Lett. 31(18), 1538–1539 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (3)

H. Kim, K. H. Han, and Y. C. Chung, “Performance limitation of hybrid WDM systems due to Stimulated Raman Scattering,” IEEE Photon. Technol. Lett. 13(10), 1118–1120 (2001).
[Crossref]

F. Tian, R. Hui, B. Colella, and D. Bowler, “Raman crosstalk in fiber-optic hybrid CATV systems with wide channel separations,” IEEE Photon. Technol. Lett. 16(1), 344–346 (2004).
[Crossref]

H. Kim, S. B. Jun, and Y. C. Chung, “Raman crosstalk suppression in CATV overlay passive optical network,” IEEE Photon. Technol. Lett. 19(9), 695–697 (2007).
[Crossref]

IEEE. Trans. Commun. (1)

P. Kabal and S. Pasupathy, “Partial-response signaling,” IEEE. Trans. Commun. 23(9), 921–934 (1975).
[Crossref]

Opt. Express (2)

Other (12)

ITU -T Recommendation G.975.1, 2004, Appendix I.9.

B. Colella, F. J. Effenberger, C. Shimer, and F. Tian, “Raman Crosstalk Control in Passive Optical Networks,” in Proc. OFC 2006, paper NWD6.
[Crossref]

N. Cheng and M. Zhou, Litvin, Kerry Effenberger, Frank, “Delay Modulation for TWDM PONs,” in Proc. OFC 2014, paper W1D.3.

A. Tanaka, N. Cvijetic, and T. Wang, “Beyond 5dB Nonlinear Raman Crosstalk Reduction via PSD Control of 10Gb/s OOK in RF-Video Coexistence Scenarios for Next-Generation PON,” in Proc. OFC 2014, paper M3I.3.
[Crossref]

A. Shahpari, J. D. Reis, S. Ziaie, R. Ferreira, M. Lima, A. N. Pinto, and A. Teixeira, “Multi system Next-Generation PONs impact on Video Overlay,” in Proc. ECOC 2013, paper Tu.3.F.3.
[Crossref]

ITU-T recommendation G.989.1, “40-Gigabit-capable passive optical networks (NG-PON2): General requirements,” 2013.

ITU-T recommendation G.989.2(draft), “40-Gigabit-capable passive optical networks: Physical media dependent layer specification,” 2013.

Y. Ma, Y. Qian, G. Peng, X. Zhou, X. Wang, J. Yu, Y. Luo, X. Yan, and F. Effenberger, “Demonstration of a 40Gb/s time and wavelength division multiplexed passive optical network prototype system,” in Proc. OFC 2012, paper PDP5D.7.
[Crossref]

R. Gaudino, V. Curri, and S. Capriata, “Propagation impairments due to Raman effect on the coexistence of GPON, XG-PON, RF-video and TWDM-PON,” in Proc. of ECOC2013, P.6.19.
[Crossref]

Y. R. Shen, Principles of Nonlinear Optics (Wiley-Interscience, 1984).

V. Curri, S. Capriata, and R. Gaudino, “Outage probability due to Stimulated Raman Scattering in GPON and TWDM-PON coexistence,” in Proc. OFC 2014, paper M3I.2.
[Crossref]

F. Coppinger, L. Chen, and D. Piehler, “Nonlinear Raman Cross-Talk in a Video Overlay Passive Optical Network,” in Proc. OFC 2003, paper TuR5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The considered downstream transmission characterized by the coexistence of RF-video and TWDM-PON. Inset (i): Downstream wavelengths; (ii): the theoretical nonlinear Raman crosstalk on RF-video (1550 nm) from multiple TWDM-PON wavelengths (1596.8 nm-1602.4 nm). WDM: wavelength division multiplexing; ONU: optical network unit
Fig. 2
Fig. 2 Measured spectra of 10-Gb/s NRZ, Miller code and dicode signal.
Fig. 3
Fig. 3 Experimental setup of co-existed downstream transmission between RF-video and TWDM-PON. Inset (i) dicode waveform; (ii) the optical spectrum of downstream wavelengths. AWG: arrayed waveguide grating; PC: polarization controller; TOF: tunable optical filter; MZM: Mach-Zehnder Modulator.
Fig. 4
Fig. 4 The nonlinear Raman crosstalk with NRZ, Miller code and Dicode signals for the case of four TWDM-PON wavelength channels
Fig. 5
Fig. 5 (a) The nonlinear Raman crosstalk at 50 MHz versus the launch power per channel for NRZ, Miller code and Dicode modulation. (b) BER and eye diagrams of NRZ and dicode coding after 20-km SSMF transmission.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Crosstalk ( dB ) = 10 log ( Induced Power on λ R F v i d e o Digital Modulation Signals Power on λ T W D M ) =10 log { ( ρ S R S P T W D M A e f f m C A T V m T W D M ) 2 i = 1 N g i 2 × 1 + e 2 α L 2 e α L cos ( 2 π f d i L ) α 2 + ( 2 π f d i ) 2 }
b n =mod( a n + b n1 )
c n = b n b n1

Metrics