Abstract

A feasible way to synthesize a surface-enhanced Raman scattering (SERS) substrate has been developed, where Ag nanoparticles (AgNPs) of different size and morphology are assembled on the surface and sidewalls of the aligned carbon nanotube (CNT) arrays via magnetron sputtering and high-temperature annealing. Our results show that the optimized substrate is performed by annealing temperature at 450 °C for 30 min. The state of the obtained AgNPs makes a significant contribution to the high sensitivity of SERS to R6G molecules, and the substrate has an enhancement factor (EF) on the order of ~1010. Meanwhile, the Ag/CNT arrays keep a good reproducibility with the average RSD values being less than 0.01 for all major Raman peaks. The temporal stability of our substrates has been also appeared, which indicates that the Ag/CNT arrays can be used as stable substrates for the production of enhanced SERS signals for up to three months under ambient conditions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles

Yu Guo, Jing Yu, Chonghui Li, Zhen Li, Jie Pan, Aihua Liu, Baoyuan Man, Tianfu Wu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21784-21796 (2018)

Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin

Yuhong Wang, Mingli Wang, Xin Sun, Guochao Shi, Jinzan Zhang, Wanli Ma, and Lijian Ren
Opt. Express 26(17) 22168-22181 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
    [Crossref] [PubMed]
  4. Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
    [Crossref] [PubMed]
  5. S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
    [Crossref] [PubMed]
  6. J. Zhang, T. Fan, X. L. Zhang, C. H. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
    [Crossref] [PubMed]
  7. X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
    [Crossref]
  8. P. A. Yu, S. N. Terekhov, and I. A. Khodasevich, “Silver-coated nanoporous silicon as SERS-active substrate for investigation of tetrapyrrolic molecules, ” Proc of SPIE, The International Conference on Coherent and Nonlinear Optics Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures, Minsk, Belarus, 6728, 672828, 2007, http://proceedings.spiedigitallibrary.org .
  9. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [Crossref] [PubMed]
  10. Y. L. Deng and Y. J. Juang, “Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis,” Biosens. Bioelectron. 53, 37–42 (2014).
    [Crossref] [PubMed]
  11. X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
    [Crossref]
  12. C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
    [Crossref]
  13. G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
    [Crossref]
  14. A. Kudelski, “Structures of monolayers formed from differnet HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrosc. 34(11), 853–862 (2003).
    [Crossref]
  15. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
    [Crossref]
  16. T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
    [Crossref] [PubMed]
  17. M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
    [Crossref] [PubMed]
  18. Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
    [Crossref] [PubMed]
  19. Y. Q. Jiang and L. W. Lin, “A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications,” Sens. Actuators A Phys. 188, 261–267 (2012).
    [Crossref]
  20. W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
    [Crossref]
  21. H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
    [Crossref]
  22. S. R. Emory and S. Nie, “Screening and enrichment of metal nanoparticles with novel optical properties,” J. Phys. Chem. B 102(3), 493–497 (1998).
    [Crossref]
  23. P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
    [Crossref]
  24. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
    [Crossref]
  25. P. Hidebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
    [Crossref]
  26. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
    [Crossref] [PubMed]
  27. Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
    [Crossref] [PubMed]

2014 (5)

J. Zhang, T. Fan, X. L. Zhang, C. H. Lai, and Y. Zhu, “Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate,” Appl. Opt. 53(6), 1159–1165 (2014).
[Crossref] [PubMed]

Y. L. Deng and Y. J. Juang, “Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis,” Biosens. Bioelectron. 53, 37–42 (2014).
[Crossref] [PubMed]

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
[Crossref]

2013 (1)

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

2012 (3)

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Y. Q. Jiang and L. W. Lin, “A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications,” Sens. Actuators A Phys. 188, 261–267 (2012).
[Crossref]

2011 (2)

W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
[Crossref] [PubMed]

2010 (3)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

2009 (1)

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

2008 (1)

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

2007 (3)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

2003 (1)

A. Kudelski, “Structures of monolayers formed from differnet HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrosc. 34(11), 853–862 (2003).
[Crossref]

1998 (1)

S. R. Emory and S. Nie, “Screening and enrichment of metal nanoparticles with novel optical properties,” J. Phys. Chem. B 102(3), 493–497 (1998).
[Crossref]

1997 (3)

G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (1)

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

1984 (1)

P. Hidebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Ajayan, P. M.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Blackie, E.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Brantley, C.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Chang, Y. C.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Chen, G.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Chipara, A. C.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Cho, W.

W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
[Crossref]

Chou, S. Y.

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Deng, Y. L.

Y. L. Deng and Y. J. Juang, “Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis,” Biosens. Bioelectron. 53, 37–42 (2014).
[Crossref] [PubMed]

Ding, F.

Duan, X. F.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Duong, H. M.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Edwards, E.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Einarsson, E.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Emory, S. R.

S. R. Emory and S. Nie, “Screening and enrichment of metal nanoparticles with novel optical properties,” J. Phys. Chem. B 102(3), 493–497 (1998).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Esconjauregui, S.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Fan, S. S.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Fan, T.

Fang, P. P.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Gaigalas, A. K.

G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
[Crossref]

Goldberg-Oppenheimer, P.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Gonçalves, M.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Hafner, J. H.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Hahm, M. G.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Hashim, D. P.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

He, X. N.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Hidebrandt, P.

P. Hidebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Hilger, P.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Hu, J.

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Ishikawa, K.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Jiang, K. L.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Jiang, Y. Q.

Y. Q. Jiang and L. W. Lin, “A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications,” Sens. Actuators A Phys. 188, 261–267 (2012).
[Crossref]

Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
[Crossref] [PubMed]

Jin, Z.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Juang, Y. J.

Y. L. Deng and Y. J. Juang, “Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis,” Biosens. Bioelectron. 53, 37–42 (2014).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Kudelski, A.

A. Kudelski, “Structures of monolayers formed from differnet HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrosc. 34(11), 853–862 (2003).
[Crossref]

Lai, C. H.

Le Ru, E. C.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Lee, S.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Li, J.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Li, J. F.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

Li, L. M.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Li, Q. Q.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Li, W. D.

Li, X.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Li, X. Y.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Li, Y. C.

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

Lin, L. W.

Y. Q. Jiang and L. W. Lin, “A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications,” Sens. Actuators A Phys. 188, 261–267 (2012).
[Crossref]

Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
[Crossref] [PubMed]

Liu, J.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Liu, K.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Lu, Y. F.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Luo, C.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Ma, Y. Y.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Mahjouri-Samani, M.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Makaryan, T.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Maruyama, S.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Meyer, M.

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

Miao, J.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Niaura, G.

G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
[Crossref]

Nie, S.

S. R. Emory and S. Nie, “Screening and enrichment of metal nanoparticles with novel optical properties,” J. Phys. Chem. B 102(3), 493–497 (1998).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nille, D.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Ogura, K.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Okawa, J.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Qu, Y. Q.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Ren, B.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

Renganathan, P. R.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Robertson, J.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Ruffin, P.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Schulz, M.

W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
[Crossref]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Shanov, V.

W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
[Crossref]

Shiomi, J.

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

Stockburger, M.

P. Hidebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Sugime, H.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Sun, C. Q.

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

Sun, Y. H.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Thurakitseree, T.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Tian, B. Z.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Tian, Z. Q.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

Vajtai, R.

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Vilker, V. L.

G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
[Crossref]

Wang, C.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Wang, P. B.

Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
[Crossref] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

Wang, Z. Y.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Xiong, W.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Yang, J. W.

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Yang, L.

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

Yang, Z. L.

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

Yao, J.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Yin, S.

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Zhang, J.

Zhang, K.

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

Zhang, L. N.

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Zhang, X. L.

Zheng, Z. P.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Zhou, J.

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

Zhou, X. M.

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

Zhou, Y. S.

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Zhu, Y.

ACS Appl. Mater. Interfaces (1)

T. Makaryan, S. Esconjauregui, M. Gonçalves, J. W. Yang, H. Sugime, D. Nille, P. R. Renganathan, P. Goldberg-Oppenheimer, and J. Robertson, “Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation,” ACS Appl. Mater. Interfaces 6(8), 5344–5349 (2014).
[Crossref] [PubMed]

Adv. Mater. (1)

S. Lee, M. G. Hahm, R. Vajtai, D. P. Hashim, T. Thurakitseree, A. C. Chipara, P. M. Ajayan, and J. H. Hafner, “Utilizing 3D SERS active volumes in aligned carbon nanotube scaffold substrates,” Adv. Mater. 24(38), 5261–5266 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. Wang, Y. C. Chang, J. Yao, C. Luo, S. Yin, P. Ruffin, C. Brantley, and E. Edwards, “Surface enhanced Raman spectroscopy by interfered femtosecond laser created nanostructures,” Appl. Phys. Lett. 100, 023107 (2012), doi:.
[Crossref]

Biosens. Bioelectron. (1)

Y. L. Deng and Y. J. Juang, “Black silicon SERS substrate: effect of surface morphology on SERS detection and application of single algal cell analysis,” Biosens. Bioelectron. 53, 37–42 (2014).
[Crossref] [PubMed]

Carbon (2)

X. Y. Li, J. Li, X. M. Zhou, Y. Y. Ma, Z. P. Zheng, X. F. Duan, and Y. Q. Qu, “Silver nanoparticles protected by monolayer graphene as a stabilized substrate for surface enhanced Raman spectroscopy,” Carbon 66, 713–719 (2014).
[Crossref]

W. Cho, M. Schulz, and V. Shanov, “Growth and characterization of vertically aligned centimeter long CNT arrays,” Carbon 72, 264–273 (2014).
[Crossref]

Chem. Commun. (Camb.) (1)

Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, “Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy,” Chem. Commun. (Camb.) 43(34), 3514–3534 (2007).
[Crossref] [PubMed]

J. Adv. Fun. Mater. (1)

X. Li, G. Chen, L. Yang, Z. Jin, and J. Liu, “Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection,” J. Adv. Fun. Mater. 20(17), 2815–2824 (2010).
[Crossref]

J. Chem. Phys. (1)

Y. C. Li, J. Zhou, K. Zhang, and C. Q. Sun, “Gold nanoparticle multilayer films based on surfactant films as a template: Preparation, characterization, and application,” J. Chem. Phys. 126(9), 094706 (2007).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. Hidebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

J. Phys. Chem. B (2)

S. R. Emory and S. Nie, “Screening and enrichment of metal nanoparticles with novel optical properties,” J. Phys. Chem. B 102(3), 493–497 (1998).
[Crossref]

G. Niaura, A. K. Gaigalas, and V. L. Vilker, “Surface-enhanced Raman spectroscopy of phosphate anions: adsorption on silver, gold, and copper electrodes,” J. Phys. Chem. B 101(45), 9250–9262 (1997).
[Crossref]

J. Phys. Chem. C (2)

E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111(37), 13794–13803 (2007).
[Crossref]

H. M. Duong, K. Ishikawa, J. Okawa, K. Ogura, E. Einarsson, J. Shiomi, and S. Maruyama, “Mechanism and optimization of metal deposition onto vertically aligned single walled carbon nanotube arrays,” J. Phys. Chem. C 113(32), 14230–14235 (2009).
[Crossref]

J. Raman Spectrosc. (2)

P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, “Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness,” J. Raman Spectrosc. 39(11), 1679–1687 (2008).
[Crossref]

A. Kudelski, “Structures of monolayers formed from differnet HS-(CH2)2-X thiols on gold, silver and copper: comparative studies by surface-enhanced Raman scattering,” J. Raman Spectrosc. 34(11), 853–862 (2003).
[Crossref]

Laser Photonics Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4(6), 795–808 (2010).
[Crossref]

Nano Lett. (1)

Y. H. Sun, K. Liu, J. Miao, Z. Y. Wang, B. Z. Tian, L. N. Zhang, Q. Q. Li, S. S. Fan, and K. L. Jiang, “Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes,” Nano Lett. 10(5), 1747–1753 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

M. Mahjouri-Samani, Y. S. Zhou, X. N. He, W. Xiong, P. Hilger, and Y. F. Lu, “Plasmonic-Enhanced Carbon Nanotube Infrared Bolometers,” Nanotechnology 24(3), 035502 (2013).
[Crossref] [PubMed]

Y. Q. Jiang, P. B. Wang, and L. W. Lin, “Characterizations of contact and sheet resistances of vertically aligned carbon nanotube forests with intrinsic bottom contacts,” Nanotechnology 22(36), 365704 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Population pumping of excited vibrational states by spontaneous surface-enhanced Raman scattering,” Phys. Rev. Lett. 76(14), 2444–2447 (1996).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

Y. Q. Jiang and L. W. Lin, “A two-stage, self-aligned vertical densification process for as-grown CNT forests in supercapacitor applications,” Sens. Actuators A Phys. 188, 261–267 (2012).
[Crossref]

Other (1)

P. A. Yu, S. N. Terekhov, and I. A. Khodasevich, “Silver-coated nanoporous silicon as SERS-active substrate for investigation of tetrapyrrolic molecules, ” Proc of SPIE, The International Conference on Coherent and Nonlinear Optics Novel Photonics Materials; Optics and Optical Diagnostics of Nanostructures, Minsk, Belarus, 6728, 672828, 2007, http://proceedings.spiedigitallibrary.org .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of (a) the AgNPs/CNTs SERS substrate and (b) the enhancement effects of Raman signal of Ag nanoparticles. There are three major effects.
Fig. 2
Fig. 2 Electromagnetic field simulation of (a) a single Ag nanoparticle and (b) two Ag nanoparticles. The axis unit is nm.
Fig. 3
Fig. 3 SEM images of highly dense AgNPs decorated on the aligned CNT arrays. SEM images of top morphology and cross section of (a) Ag film after deposition (before annealing), (b) AgNPs on the top and side walls of aligned CNT arrays along the perpendicular axis after annealing.
Fig. 4
Fig. 4 SEM photos of AgNPs surface and sidewalls of (a) sample A, (b) sample B, (c) sample C and (d) sample D.
Fig. 5
Fig. 5 SERS spectra of R6G molecular collected on a set of Ag/CNT arrays at different R6G concentrations of (a) 0.5 × 104 M and (b) 0.5 × 106 M adsorbed on four different substrates (Sample A, B, C, D)
Fig. 6
Fig. 6 Raman intensity of R6G (10−5 M) collected (a) on the randomly selected 8 places on the Ag/CNTs (Sample A), (b) at 1502 cm−1 of 8 places.
Fig. 7
Fig. 7 RSD values of SERS of 10−5 M R6G collected on the randomly selected 8 places.
Fig. 8
Fig. 8 Raman intensity of R6G (10−4 M) from the Ag/CNTs (450 °C, 40 min) (a) at different time points and (b) at 1502 cm−1 along with exposure time
Fig. 9
Fig. 9 Raman intensity of R6G at a concentration of 0.5 × 10−4 M adsorbed on SiO2 and SERS substrate

Tables (3)

Tables Icon

Table 1 RSD Values for the Major Peaks of the R6G SERS Spectrum

Tables Icon

Table 2 Three Major Definitions of the EF, SMEF for Single Molecular EF, SSEF for Substrate SERS EF, AEF for Analytical EF.

Tables Icon

Table 3 Values of Enhancement Factor for the Major Raman Peaks, Measured with Different Sample

Metrics