Abstract

Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg
Opt. Express 21(16) 19047-19060 (2013)

Phase control of squeezed vacuum states of light in gravitational wave detectors

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote
Opt. Express 23(7) 8235-8245 (2015)

Balanced homodyne readout for quantum limited gravitational wave detectors

Peter Fritschel, Matthew Evans, and Valery Frolov
Opt. Express 22(4) 4224-4234 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. M. Harry, (for the LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors,” Class. and Quant. Grav. 27, 084006 (2010).
    [Crossref]
  2. Virgo Collaboration, “Advanced Virgo status”, Proceeding of the 9th LISA symposium (2012).
  3. Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
    [Crossref]
  4. The LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys. 72, 076901 (2009).
    [Crossref]
  5. Virgo Collaboration, “Virgo: a laser interferometer to detect gravitational waves,” Journal of Instrumentation 7, P03012 (2012).
  6. H. Grote, and the LIGO Scientific Collaboration, “The GEO600 status,” Class. and Quant. Grav. 27, 084003 (2010).
    [Crossref]
  7. K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
    [Crossref]
  8. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
    [Crossref] [PubMed]
  9. H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
    [Crossref]
  10. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
    [Crossref]
  11. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Phys. 7(12), 962–965 (2011).
    [Crossref]
  12. The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
    [Crossref]
  13. S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
    [Crossref] [PubMed]
  14. S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
    [Crossref]
  15. M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
    [Crossref]
  16. R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
    [Crossref]
  17. E.T. Collaboration, “The Einstein Telescope: a third-generation gravitational wave observatory,” Class. and Quant. Grav. 27(19), 194002 (2010).
    [Crossref]
  18. The LIGO Scientific Collaboration, “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors,” Class. and Quant. Grav. 27, 173001 (2010).
    [Crossref]
  19. The LIGO Scientific Collaboration, “Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3,” Phys. Rev. D 85, 082002 (2012).
    [Crossref]
  20. M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
    [Crossref]
  21. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref] [PubMed]
  22. A. Khalaidovski, “Beyond the quantum limit: a squeezed-light laser in GEO600,” PhD. Thesis, University of Hannover (2012).
  23. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
    [Crossref]
  24. D. Anderson, “Alignment of resonant optical cavities,” Appl. Opt. 23, 2944–2949 (1984).
    [Crossref] [PubMed]
  25. S. Dwyer, “Quantum noise reduction using squeezed states in LIGO,” PhD. Thesis, Massachusetts Institute of Technology (2012).
  26. B. Canuel, E. Genin, G. Vajente, and J. Marque, “Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors,” Opt. Express 21(9), 10546–10562 (2013).
    [Crossref] [PubMed]
  27. P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)
  28. S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
    [Crossref] [PubMed]
  29. M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52(12), 2909–2916 (2013).
    [Crossref] [PubMed]
  30. Z. Liu, P. Fulda, M. A. Arain, L. Williams, G. Mueller, D. B. Tanner, and D. H. Reitze, “Feedback control of optical beam spatial profiles using thermal lensing,” Appl. Opt. 52(26), 6452–6457 (2013)
    [Crossref] [PubMed]
  31. F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
    [Crossref]
  32. T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
    [Crossref]
  33. H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref] [PubMed]
  34. K. Dooley, “Phase control of squeezed states of light in gravitational-wave detectors,” in preparation.
  35. E. Schreiber, “Alignment sensing and control for squeezed vacuum states of light,” in preparation.
  36. S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
    [Crossref]
  37. T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
    [Crossref]
  38. K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).
  39. M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
    [Crossref]
  40. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
    [Crossref] [PubMed]
  41. S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
    [Crossref]
  42. F. Matichard, ”LIGO vibration isolation and alignment platforms: an overview of systems, features and performance of interest for the field of precision positioning and manufacturing,” Proceedings of ASPE conference on Precision Control for Advanced Manufacturing Systems, (2013).

2014 (2)

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

2013 (9)

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. Kasprzack, B. Canuel, F. Cavalier, R. Day, E. Genin, J. Marque, D. Sentenac, and G. Vajente, “Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams,” Appl. Opt. 52(12), 2909–2916 (2013).
[Crossref] [PubMed]

B. Canuel, E. Genin, G. Vajente, and J. Marque, “Displacement noise from back scattering and specular reflection of input optics in advanced gravitational wave detectors,” Opt. Express 21(9), 10546–10562 (2013).
[Crossref] [PubMed]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Z. Liu, P. Fulda, M. A. Arain, L. Williams, G. Mueller, D. B. Tanner, and D. H. Reitze, “Feedback control of optical beam spatial profiles using thermal lensing,” Appl. Opt. 52(26), 6452–6457 (2013)
[Crossref] [PubMed]

T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
[Crossref]

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
[Crossref]

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

2012 (5)

Virgo Collaboration, “Virgo: a laser interferometer to detect gravitational waves,” Journal of Instrumentation 7, P03012 (2012).

The LIGO Scientific Collaboration, “Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3,” Phys. Rev. D 85, 082002 (2012).
[Crossref]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

2011 (2)

2010 (5)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

H. Grote, and the LIGO Scientific Collaboration, “The GEO600 status,” Class. and Quant. Grav. 27, 084003 (2010).
[Crossref]

G. M. Harry, (for the LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors,” Class. and Quant. Grav. 27, 084006 (2010).
[Crossref]

E.T. Collaboration, “The Einstein Telescope: a third-generation gravitational wave observatory,” Class. and Quant. Grav. 27(19), 194002 (2010).
[Crossref]

The LIGO Scientific Collaboration, “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors,” Class. and Quant. Grav. 27, 173001 (2010).
[Crossref]

2009 (2)

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

The LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys. 72, 076901 (2009).
[Crossref]

2008 (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

2007 (2)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

2006 (3)

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

2004 (1)

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

1984 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Abbott, R.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Adhikari, R.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Adhikari, R. X.

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

Anderson, D.

Ando, M.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Arai, K.

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

Arain, M. A.

Aso, Y.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Barnum, S.

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

Barsotti, L.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Bowen, W. P.

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Buchler, B.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

Buchler, B. C.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

Canuel, B.

Cavalier, F.

Chelkowski, S.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

chimura, M.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Chua, S.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

Chua, S. S. Y.

Danzmann, K.

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Day, R.

Degallaix, J.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Dooley, K.

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

K. Dooley, “Phase control of squeezed states of light in gravitational-wave detectors,” in preparation.

Dooley, K. L.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Dwyer, S.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

S. Dwyer, “Quantum noise reduction using squeezed states in LIGO,” PhD. Thesis, Massachusetts Institute of Technology (2012).

Eberle, T.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Evans, M.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)

Factourovich, M.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Foreman, S.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

Franzen, A.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Freise, A.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Fricke, T. T.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Fritschel, P.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

Frolov, V.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Frolov, V. V.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Fulda, P.

Genin, E.

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Gray, M.

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Grosse, N.

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Grote, H.

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

H. Grote, and the LIGO Scientific Collaboration, “The GEO600 status,” Class. and Quant. Grav. 27, 084003 (2010).
[Crossref]

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Gustafson, D.

Gustafson, R.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

Hage, B.

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Hall, J. L.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Handchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Harms, J.

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Harry, G. M.

G. M. Harry, (for the LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors,” Class. and Quant. Grav. 27, 084006 (2010).
[Crossref]

Hewitson, M.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Hild, S.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Hough, J.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Isogai, T.

Kasprzack, M.

Kawabe, K.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Khalaidovski, A

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

Khalaidovski, A.

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

A. Khalaidovski, “Beyond the quantum limit: a squeezed-light laser in GEO600,” PhD. Thesis, University of Hannover (2012).

Kissel, J. S.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Kwee, P.

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
[Crossref]

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)

Lam, P. K.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Landry, M.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Lee, J.

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Lewis, J.

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

Liu, Z.

Luck, H.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Ludlow, A. D.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

Ma, L.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

Magaa-Sandoval, F.

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Marque, J.

Matichard, F.

F. Matichard, ”LIGO vibration isolation and alignment platforms: an overview of systems, features and performance of interest for the field of precision positioning and manufacturing,” Proceedings of ASPE conference on Precision Control for Advanced Manufacturing Systems, (2013).

Mavalvala, N.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

McClelland, D.

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

McClelland, D. E.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

McKenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Meadors, G.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

Meadors, G. D.

Mehmet, M.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Miao, H.

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

Michimura,

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Miller, J.

T. Isogai, J. Miller, P. Kwee, L. Barsotti, and M. Evans, “Loss in long-storage-time optical cavities,” Opt. Express 21(24), 30114–30125 (2013).
[Crossref]

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)

Miyakawa, O.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Mow-Lowry, C.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

Mow-Lowry, C. M.

Mueller, G.

Muller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Notcutt, M.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

Prijatelj, M.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Reitze, D. H.

Sankar, S.

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Saulson, P.

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Schnabel, R.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Schofield, R.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

Schofield, R. M. S.

Schreiber, E.

E. Schreiber, “Alignment sensing and control for squeezed vacuum states of light,” in preparation.

Sekiguchi, T.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Sentenac, D.

Shaddock, D.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Chua, M. Stefszky, C. Mow-Lowry, B. Buchler, S. Dwyer, D. Shaddock, P. K. Lam, and D. McClelland, “Backscatter tolerant squeezed light source for advanced gravitational-wave detectors,” Opt. Lett. 36(23), 4680 (2011).
[Crossref] [PubMed]

Shaddock, D. A.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

Sigg, D.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Slagmolen, B. J. J.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Slutzky, J.

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Smith, J.

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Smith, J. R.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Smith-Lefebvre, N.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Smith-Lefebvre, N. D.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Somiya, K.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Stefszky, M.

Stefszky, M. S.

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

Steinlechner, S.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Strain, K.A.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Tanner, D. B.

Tatsumi, D.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Vahlbruch, H.

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

Vajente, G.

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Vorvick, C.

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express 21, 19047–19060 (2013).
[Crossref] [PubMed]

Waldman, S.

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

Waldman, S. J.

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

Whitcomb, S.

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

Williams, L.

Willke, B.

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

Yamamoto, H.

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Ye, J.

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97 (1983).
[Crossref]

Class. and Quant. Grav. (7)

M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland, “Balanced homodyne detection of optical quantum states at audio-band frequencies and below,” Class. and Quant. Grav. 29, 145015 (2012).
[Crossref]

T. T. Fricke, N. D. Smith-Lefebvre, R. Abbott, R. Adhikari, K. L. Dooley, M. Evans, P. Fritschel, V. V. Frolov, K. Kawabe, J. S. Kissel, B. J. J. Slagmolen, and S. J. Waldman, “DC readout experiment in enhanced LIGO,” Class. and Quant. Grav. 29, 065005 (2012).
[Crossref]

G. M. Harry, (for the LIGO Scientific Collaboration), “Advanced LIGO: the next generation of gravitational wave detectors,” Class. and Quant. Grav. 27, 084006 (2010).
[Crossref]

H. Grote, and the LIGO Scientific Collaboration, “The GEO600 status,” Class. and Quant. Grav. 27, 084003 (2010).
[Crossref]

S. Chua, S. Dwyer, L. Barsotti, D. Sigg, R. Schofield, V. Frolov, K. Kawabe, M. Evans, G. Meadors, M. Factourovich, R. Gustafson, N. Smith-Lefebvre, C. Vorvick, M. Landry, A Khalaidovski, M. Stefszky, C. Mow-Lowry, B. Buchler, D. Shaddock, P. K. Lam, R. Schnabel, N. Mavalvala, and D. E. McClelland, “Impact of back scattered light in a squeezing-enhanced interferometric gravitational wave detector,” Class. and Quant. Grav. 31, 035017 (2014).
[Crossref]

E.T. Collaboration, “The Einstein Telescope: a third-generation gravitational wave observatory,” Class. and Quant. Grav. 27(19), 194002 (2010).
[Crossref]

The LIGO Scientific Collaboration, “Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors,” Class. and Quant. Grav. 27, 173001 (2010).
[Crossref]

Class. Quantum Grav. (1)

S. Hild, H. Grote, J. Degallaix, S. Chelkowski, K. Danzmann, A. Freise, M. Hewitson, J. Hough, H. Luck, M. Prijatelj, K.A. Strain, J. R. Smith, and B. Willke, “DC readout of signal-recycled gravitational wave detector,” Class. Quantum Grav. 26, 055012, 2009
[Crossref]

JOSA A (1)

F. Magaa-Sandoval, R. Adhikari, V. Frolov, J. Harms, J. Lee, S. Sankar, P. Saulson, and J. Smith, “Large-angle scattered light measurements for quantum-noise filter cavity design studies,” JOSA A 29(8), 1722–1727 (2012).
[Crossref]

Journal of Instrumentation (1)

Virgo Collaboration, “Virgo: a laser interferometer to detect gravitational waves,” Journal of Instrumentation 7, P03012 (2012).

Nature Photon. (1)

The LIGO Scientific Collaboration, “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photon. 7, 613–619 (2013).
[Crossref]

Nature Phys. (2)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nature Phys. 4, 472 (2008).
[Crossref]

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Phys. 7(12), 962–965 (2011).
[Crossref]

New J. Phys. (1)

H. Vahlbruch, S. Chelkowski, K. Danzmann, and R. Schnabel, “Quantum engineering of squeezed states for quantum communication and metrology,” New J. Phys. 9, 371 (2007).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (2)

M. Notcutt, L. Ma, A. D. Ludlow, S. Foreman, J. Ye, and J. L. Hall, “Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers,” Phys. Rev. A 73, 031804 (2006)
[Crossref]

S. Chelkowski, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Coherent control of broadband vacuum squeezing,” Phys. Rev. A 75, 043814 (2007).
[Crossref]

Phys. Rev. D (3)

The LIGO Scientific Collaboration, “Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3,” Phys. Rev. D 85, 082002 (2012).
[Crossref]

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao, “Realistic filter cavities for advanced gravitational wave detectors”, Phys. Rev. D 88, 022002 (2013).
[Crossref]

Y. Aso, Michimura, M. chimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, and H. Yamamoto, “Interferometer design of the KAGRA gravitational wave detector,” Phys. Rev. D 88, 043007 (2013).
[Crossref]

Phys. Rev. Lett. (5)

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. Gray, D. McClelland, and P. K. Lam, “Squeezing in the audio gravitational wave detection band,” Phys. Rev. Lett. 93, 161105 (2004).
[Crossref]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, “Coherent control of vacuum squeezing in the gravitational-wave detection band,” Phys. Rev. Lett. 97, 011101 (2006).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. Dooley, R. Schnabel, J. Slutzky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

The LIGO Scientific Collaboration, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Rep. Prog. Phys. 72, 076901 (2009).
[Crossref]

Rev. Mod. Phys. (1)

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86, 121 (2014).
[Crossref]

Other (8)

Virgo Collaboration, “Advanced Virgo status”, Proceeding of the 9th LISA symposium (2012).

A. Khalaidovski, “Beyond the quantum limit: a squeezed-light laser in GEO600,” PhD. Thesis, University of Hannover (2012).

S. Dwyer, “Quantum noise reduction using squeezed states in LIGO,” PhD. Thesis, Massachusetts Institute of Technology (2012).

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans, “Decoherence and degradation of squeezed states in quantum filter cavities,” submitted for publication (2014)

K. Dooley, “Phase control of squeezed states of light in gravitational-wave detectors,” in preparation.

E. Schreiber, “Alignment sensing and control for squeezed vacuum states of light,” in preparation.

K. Arai, S. Barnum, P. Fritschel, J. Lewis, and S. Waldman, “Output mode cleaner design,” LIGO working note, LIGO-T1000276-v5 (2013).

F. Matichard, ”LIGO vibration isolation and alignment platforms: an overview of systems, features and performance of interest for the field of precision positioning and manufacturing,” Proceedings of ASPE conference on Precision Control for Advanced Manufacturing Systems, (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1:
Fig. 1: Maximum level of “effective” squeezing measurable in an optical system in the presence of optical losses and squeezed quadrature fluctuations, obtained by optimizing the amount of input squeezing [13]. Squeezing levels relative to shot noise are expressed in decibels. The squeezed quadrature fluctuations are root mean squared (RMS) fluctuations about a mean quadrature angle chosen to maximize the level of squeezing.
Fig. 2:
Fig. 2: Top: A typical set-up for squeezing injection in the first demonstrations of squeezing at GEO600 and LIGO, both using DC readout [36,37]. The shaded gray region corresponds to the detector vacuum envelope; the cyan circles represent seismically isolated tables. The squeezed light source is housed outside of vacuum. The OPO cavity is locked to the green pump light. The squeezed (dashed red) and control (orange) fields enter vacuum through a viewport and are injected into the interferometer through the Output Faraday Isolator. A Squeezing Injection Faraday Isolator is inserted between the squeezed light source and the Output Faraday to provide additional attenuation of backscattered light [11, 14]. A small pickoff beam is sampled prior to the output mode cleaner (OMC) to control the squeezed quadrature angle. The squeezed and interferometer fields are measured in transmission through the OMC to obtain the gravitational wave signal. Details of the control topologies adopted in first generation detectors can be found in [11, 12]. Bottom: Proposed design for future detectors. This design features an in-vacuum OPO. The remainder of the squeezed light source remains outside of vacuum. The coherent control error signal [8] is now derived in transmission through the OMC [33]. Details of this new control topology can be found in section 6.
Fig. 3:
Fig. 3: Back scattered light noise projections for three different scenarios: OPO placed on an optics table on the ground, without seismic isolation (similar to the LIGO H1 squeezing demonstration setup [14]), OPO placed on an isolated platform enclosed in the main LIGO vacuum envelope [42]; OPO suspended on an isolated platform enclosed in the main LIGO vacuum envelope (a single stage 1 Hz suspension on an isolated platform is considered here). In the first two cases, 30 dB of isolation from spurious light reaching the OPO is also assumed. The requirement curve optimistically targets 10 dB of broadband squeezing.

Tables (2)

Tables Icon

Table 1: Expected sources of loss for squeezing injection in Advanced LIGO (left), compared to projected losses achievable in the near future after replacing lossy Faraday rotators and polarizers, implementing active mode matching control, and reducing losses in the OMC.

Tables Icon

Table 2: Coupling coefficients Aij calculated using the parameters for the advanced LIGO OMC. This cavity has a finesse of 390, higher order mode spacing of 58 MHz, and a free spectral range of 264.8 MHz. The detuning of the control sidebands, Ω, is 15 MHz. A mode order of n corresponds to any mode TEMij with i + j = n.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

L ( θ ˜ x ω 0 π λ ) 2 + ( Δ ˜ x ω 0 ) 2
L 0.01 × [ ( 0.3 θ ˜ x 100 μ rad ) 2 + ( Δ ˜ x 10 μ m ) 2 ] for ω 0 = 100 μ m
L 0.01 × [ ( 0.3 θ ˜ x 10 μ rad ) 2 + ( Δ ˜ x 100 μ m ) 2 ] for ω 0 = 1 mm
d θ sqz d δ L = ω L ¯ ( 1 γ b tot + 1 γ a tot ( 1 + x 2 ) ) .
Δ θ alignment = i j ρ i j clf ρ i j ifo sin ϕ i j 1 + i j ρ i j clf ρ i j ifo cos ϕ i j i j ρ i j clf ρ i j ifo sin ϕ i j .
δ θ sqz ( t ) i j ρ ¯ i j clf δ ρ i j ifo ( 1 + ϕ ¯ i j ) δ ϕ i j ( t )
RIN sc RIN q n ( f ) = 4 π δ z sc ( f ) η P D P sc λ h c
P sc = P sc , inc R OPO η loss
RIN sc RIN q n ( f ) = 4 π δ z sc ( f ) η P D P sc λ h c 10 s / 20 10 .
δ ν = ν l δ l ~ 1 Hz Hz at 100 Hz
Δ θ alignment trans i j A i j ρ i j clf ρ i j ifo sin ϕ i j
δ θ sqz trans ( t ) i j A i j ρ ¯ i j clf δ ρ i j ifo ( 1 + ϕ ¯ i j ) δ ϕ i j ( t )
θ sqz = θ B / 2 ϕ ifo = ϕ ψ / 2
I err a 00 ifo a 00 + cos ( ϕ + θ d m ) + a 00 ifo a 00 cos ( ϕ ψ + θ d m ) + i j a i j ifo [ a i j + cos ( ϕ + ϕ i j ifo ϕ i j + + θ d m ) + a i j cos ( ϕ ψ + ϕ i j ϕ i j ifo + θ d m ) ]
I err cos ( ϕ + θ d m ) + α cos ( ϕ ψ + θ d m ) + i j ρ i j ifo ρ i j clf [ cos ( ϕ + ϕ i j + θ d m ) + α cos ( ϕ ψ ϕ i j + θ d m ) ]
ρ i j ifo = a i j ifo a 00 ifo ρ i j clf = a i j + a 00 + ϕ i j = ϕ i j ifo ϕ i j clf
α = a 00 + a 00 = a i j a i j +
I err ( 1 α ) [ sin ( Δ ϕ ) + i j ρ i j ifo ρ i j clf sin ( Δ ϕ ϕ i j ) ]
Δ ϕ = i j ρ i j clf ρ i j ifo sin ϕ i j 1 + i j ρ i j clf ρ i j ifo cos ϕ i j i j ρ i j clf ρ i j ifo sin ϕ i j
a 00 , tr ifo = T ( 0 ) a 00 ifo a i j , tr ifo = T ( Δ ω ( i , j ) ) a i j ifo a 00 , tr + = T ( Ω ) a 00 + a i j , tr + = T ( Ω + Δ ω ( i , j ) ) a i j + a 00 , tr = T r ( Ω ) a 00 a i j , tr = T ( Ω + Δ ω ( i , j ) ) a i j
ϕ tr ifo = ϕ ifo ϕ tr + = ϕ + π / 2 ϕ tr = ϕ + π / 2 ψ tr = ψ π ϕ tr = ϕ π / 2 θ sqz , tr = θ sqz
θ i j , tr ifo = ϕ i j ifo π / 2 ϕ i j , tr + = ϕ i j + π / 2 ϕ i j , tr = ϕ i j π / 2
I err cos ( ϕ tr + θ d m ) + α cos ( ϕ tr ψ tr + θ d m ) + i j T ( Δ ω ( i , j ) ) T ( Ω ) ρ i j ifo ρ i j clf × [ cos ( ϕ tr + ϕ i j + θ d m ) T ( Ω + Δ ω ( i , j ) ) + α cos ( ϕ tr ψ tr ϕ i j + θ d m ) T ( Ω + Δ ω ( i , j ) ) ]
Δ ϕ i j A i j ρ i j ifo ρ i j clf sin ( ϕ i j ) A i j = T ( Δ ω ( i , j ) ) ( 1 α ) T ( Ω ) [ T ( Ω + Δ ω ( i , j ) ) α T ( Ω + Δ ω ( i , j ) ) ]

Metrics