Abstract

Laser speckle contrast imaging (LSCI) is a simple yet powerful tool to image blood flow. However, traditional LSCI has limited quantitative analysis capabilities due to various factors affecting flow speed evaluation, including illumination intensity, scattering from static tissues, and mathematical complexity of blood flow estimation. Here, we present a frequency-domain laser speckle imaging (FDLSI) method that can directly measure absolute flow speed. In phantom experiments, the measured flow speed agreed well with the preset actual values (10% deviation). Furthermore, in vivo experiments demonstrated that FDLSI was minimally affected by illumination condition changes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [CrossRef]
  2. L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013).
    [CrossRef] [PubMed]
  3. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
    [CrossRef] [PubMed]
  4. A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
    [CrossRef] [PubMed]
  5. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012).
    [CrossRef] [PubMed]
  6. J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013).
    [CrossRef] [PubMed]
  7. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [CrossRef] [PubMed]
  8. B. J. Berne, Dynamic light scattering: With applications to chemistry, biology and physics (Courier Dover Publications, 1976).
  9. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
    [CrossRef]
  10. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [CrossRef] [PubMed]
  11. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [CrossRef] [PubMed]
  12. D. D. Duncan, S. J. Kirkpatrick, and R. K. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  13. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  14. S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
    [CrossRef] [PubMed]
  15. O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
    [CrossRef] [PubMed]
  16. J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
    [CrossRef] [PubMed]
  17. J. W. Goodman, Speckle phenomena in optics: Theory and applications (Roberts and Company Publishers, 2007).
  18. R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).
    [CrossRef] [PubMed]
  19. J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
    [CrossRef] [PubMed]
  20. J. Lim, H. F. Ding, M. Mir, R. Y. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express 2(10), 2784–2791 (2011).
    [CrossRef] [PubMed]
  21. J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [CrossRef] [PubMed]
  22. P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
    [CrossRef] [PubMed]
  23. J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).
  24. A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
    [CrossRef]
  25. J. Briers and A. Fercher, “Laser speckle technique for the visualization of retinal blood flow,” in The Max Born Centenary Conference(International Society for Optics and Photonics, 1983), pp. 22–28.
    [CrossRef]
  26. S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013).
    [CrossRef] [PubMed]
  27. Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
    [CrossRef] [PubMed]
  28. H. Y. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
    [CrossRef] [PubMed]
  29. W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
    [CrossRef] [PubMed]
  30. R. Z. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
    [CrossRef] [PubMed]

2013 (8)

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013).
[CrossRef] [PubMed]

R. Z. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, E. Mendez-Aguilar, N. Salazar-Hermenegildo, A. Fuentes-Garcia, R. Ramos-Garcia, and B. Choi, “Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: Implications for measurements of blood-flow dynamics,” Biomed. Opt. Express 4(10), 1883–1889 (2013).
[CrossRef] [PubMed]

L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013).
[CrossRef] [PubMed]

2012 (2)

O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett. 37(19), 3957–3959 (2012).
[CrossRef] [PubMed]

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012).
[CrossRef] [PubMed]

2011 (2)

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

J. Lim, H. F. Ding, M. Mir, R. Y. Zhu, K. Tangella, and G. Popescu, “Born approximation model for light scattering by red blood cells,” Biomed. Opt. Express 2(10), 2784–2791 (2011).
[CrossRef] [PubMed]

2010 (2)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

2008 (3)

2007 (1)

2005 (2)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

2001 (1)

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef] [PubMed]

1989 (1)

A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
[CrossRef]

1981 (2)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

R. Bonner and R. Nossal, “Model for laser doppler measurements of blood flow in tissue,” Appl. Opt. 20(12), 2097–2107 (1981).
[CrossRef] [PubMed]

1974 (1)

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Andrews, M. K.

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Badea, C. T.

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Bi, R. Z.

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

Bonner, R.

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef] [PubMed]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Cardenas, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

Cheng, H. Y.

Cheng, K. K.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Choi, B.

Daly, S. M.

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013).
[CrossRef] [PubMed]

Davis, J. L.

Ding, H. F.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Dong, J.

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[CrossRef] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, and R. K. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
[CrossRef] [PubMed]

Dunn, A. K.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013).
[CrossRef] [PubMed]

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. J. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Duong, T. Q.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

H. Y. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32(15), 2188–2190 (2007).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Duvernoy, J.

A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
[CrossRef]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Fuentes-Garcia, A.

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Gopal, A.

Hedlund, L. W.

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

Johnson, G. A.

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Jones, T. A.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

Kazmi, S. M. S.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

L. M. Richards, S. M. S. Kazmi, J. L. Davis, K. E. Olin, and A. K. Dunn, “Low-cost laser speckle contrast imaging of blood flow using a webcam,” Biomed. Opt. Express 4(10), 2269–2283 (2013).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, and R. K. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25(1), 9–15 (2008).
[CrossRef] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[CrossRef] [PubMed]

Koo, A.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Kwan, H. C.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

Leahy, M. J.

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013).
[CrossRef] [PubMed]

Lee, K.

Li, N.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

Li, Y.

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

Lim, J.

Liu, Q.

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

Lu, H. Y.

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

Ma, Y. P.

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Maï, W.

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Mendez-Aguilar, E.

Miao, P.

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

Mir, M.

Nossal, R.

Olin, K. E.

Oulamara, A.

A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
[CrossRef]

Parthasarathy, A. B.

Parthasarthy, A. B.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

Ponticorvo, A.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

Popescu, G.

Ramirez-San-Juan, J. C.

Ramos-Garcia, R.

Rege, A.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

Richards, L. M.

Salazar-Hermenegildo, N.

Senarathna, J.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

Song, N. E.

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Tangella, K.

Thakor, N. V.

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

Tom, W. J.

Tong, S. B.

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

Tribillon, G.

A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
[CrossRef]

Ts’o, D.

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

Wang, R. K. K.

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef] [PubMed]

Wheeler, C. T.

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Yang, O.

Zhang, X. J.

Zhu, R. Y.

Ann. Biomed. Eng. (1)

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng. 40(2), 367–377 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (3)

IEEE Rev. Biomed. Eng. (1)

J. Senarathna, A. Rege, N. Li, and N. V. Thakor, “Laser speckle contrast imaging: Theory, instrumentation and applications,” IEEE Rev. Biomed. Eng. 6, 99–110 (2013).
[CrossRef] [PubMed]

J Biophoton. (1)

S. M. Daly and M. J. Leahy, “‘Go with the flow ’: A review of methods and advancements in blood flow imaging,” J Biophoton. 6(3), 217–255 (2013).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: Theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[CrossRef] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (lasca): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef] [PubMed]

P. Miao, H. Y. Lu, Q. Liu, Y. Li, and S. B. Tong, “Laser speckle contrast imaging of cerebral blood flow in freely moving animals,” J. Biomed. Opt. 16(9), 090502 (2011).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[CrossRef] [PubMed]

A. Ponticorvo, D. Cardenas, A. K. Dunn, D. Ts’o, and T. Q. Duong, “Laser speckle contrast imaging of blood flow in rat retinas using an endoscope,” J. Biomed. Opt. 18(9), 090501 (2013).
[CrossRef] [PubMed]

O. B. Thompson and M. K. Andrews, “Tissue perfusion measurements: Multiple-exposure laser speckle analysis generates laser doppler-like spectra,” J. Biomed. Opt. 15(2), 027015 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

S. M. S. Kazmi, A. B. Parthasarthy, N. E. Song, T. A. Jones, and A. K. Dunn, “Chronic imaging of cortical blood flow using multi-exposure speckle imaging,” J. Cereb. Blood Flow Metab. 33(6), 798–808 (2013).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological-activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36(2), 165–179 (1989).
[CrossRef]

J. Opt. Soc. Am. A (2)

Magn. Reson. Med. (1)

W. Maï, C. T. Badea, C. T. Wheeler, L. W. Hedlund, and G. A. Johnson, “Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents,” Magn. Reson. Med. 53(4), 858–865 (2005).
[CrossRef] [PubMed]

Microvasc. Res. (1)

Y. P. Ma, A. Koo, H. C. Kwan, and K. K. Cheng, “On-line measurement of the dynamic velocity of erythrocytes in the cerebral microvessels in the rat,” Microvasc. Res. 8(1), 1–13 (1974).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Physiol. Meas. (1)

J. D. Briers, “Laser doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiol. Meas. 22(4), R35–R66 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[CrossRef]

Other (4)

J. W. Goodman, Speckle phenomena in optics: Theory and applications (Roberts and Company Publishers, 2007).

B. J. Berne, Dynamic light scattering: With applications to chemistry, biology and physics (Courier Dover Publications, 1976).

J. W. Goodman, Introduction to fourier optics (Roberts and Company Publishers, 2005).

J. Briers and A. Fercher, “Laser speckle technique for the visualization of retinal blood flow,” in The Max Born Centenary Conference(International Society for Optics and Photonics, 1983), pp. 22–28.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation results. (a) Optical configuration of FDLSI imaging system. The Airy disc is on the imaging plan. The image pattern displacement reflects the particle movement. Autocovariance function decay curve under single speed can be fitted well by Gaussian function (Adj. R-square: 0.99946). (b) Decorrelation distance l0 as a function of NA−1 numerically calculated from Eq. (8). r0: Airy disk radius of the image system. (c) l0 as a function of CCD single pixel size a. l0 keeps constant when a is smaller than r0 and gradually approaches to a-2r0 when a is larger than r0. (d) Comparison of autocovariance function decay curves under different flow models. Rapid flow model: ordered flow with Gaussian distribution. Slow flow model: hybrid flow described by Eq. (13). In single speed, rapid flow and slow flow models, mean speed is 0.5 mm/s. In rapid Gaussian flow, slow Gaussian flow and Brownian motion models, root-mean-square speed is 0.4 mm/s. (1 × , NA = 0.2).

Fig. 2
Fig. 2

Experimental setup

Fig. 3
Fig. 3

Phantom test of FDLSI to quantify absolute flow speed. (a) Image of a micro-tube under coherent illumination. The white box highlights the capture area by FDLSI. (b) Flow profiles at different speeds. Solid lines are parabolic fitting results. (c) Comparison between FDLSI measured center flow speed and preset actual values obtained from syringe pump.

Fig. 4
Fig. 4

In vivo FDLSI measurements of blood flow speed under different illumination conditions. (a) Schematic of experimental setup. The illumination condition was altered by changing the illumination angle. (b) Traditional LSCI image of rat ear overlaid with a pseudo-colored FDLSI image. (c) Center flow speed measured by FDLSI. (d) 1/K2 measured by traditional LSCI. (e) and (f) Blood flow distributions under angle θ2 and θ3 by FDLSI and traditional LSCI respectively. Solid lines are parabolic fitting results.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

C t ( τ )= [ I( t ) I ] * [ I( t+τ ) I ] = I ( t ) * I( t+τ ) t I 2
K 2 = 2 T I 2 0 T ( 1 τ T ) C t ( τ )dτ .
{ I ˜ ( ω )= 1 2π I( t ) e iωt dt I( t )= I ˜ ( ω ) e iωt dω .
C t ( τ )= lim T 1 2T T T ( ( I ˜ ( ω 1 ) * e i ω 1 t )( I ˜ ( ω 2 ) e i ω 2 ( t+τ ) )d ω 1 d ω 2 )dt I 2 = δ ω 1 , ω 2 I ˜ ( ω 1 ) * I ˜ ( ω 2 ) e i ω 2 τ d ω 1 d ω 2 I 2 , = | I ˜ ( ω ) | 2 e iωτ dω I 2
U( x,y )=δ( xM x 0 Mvt,yM y 0 )h( x,y ), =h( xM x 0 Mvt,yM y 0 )
h( x,y )= A 0 J 1 ( 2π NA λM x 2 + y 2 ) 2π NA λM x 2 + y 2 ,
C t ( v,τ )= | h ( x 1 M x 0 , y 1 M y 0 ) * h( x 1 M x 0 Mvτ, y 1 M y 0 ) | | h( x 1 M x 0 , y 1 M y 0 ) | 2 .
C t ( v,τ )= | h ( x,y ) * h( x+Mvτ,y ) | 2 dxdy | h( x,y ) | 2 dxdy ,
C t ( v,τ )= e ( Mvτ ) 2 l 0 2 .
{ C t ( v,τ )= | h ( x,y ) * h ( x+Mvτ,y ) | 2 dxdy | h ( x,y ) | 2 dxdy h ( x,y )= h( x x ,y y )d x d y ,
C t ( τ )= 0 + P( v ) C t ( v,τ )dv .
P( v )= 2 π v ˜ 3 ( v v 0 ) 2 e ( v v 0 ) 2 v ˜ 2 ,
C t ( τ )= e M 2 v 0 2 τ 2 l 0 2 + M 2 v ˜ 2 τ 2 [ l 0 3 ( l 0 2 + M 2 v ˜ 2 τ 2 ) 3 2 + 2 M 4 v 0 2 v ˜ 2 l 0 τ 4 ( l 0 2 + M 2 v ˜ 2 τ 2 ) 5 2 ].

Metrics