Abstract

We present a Silicon Photonic (SiP) intensity modulator operating at 1.3 μm with pulse amplitude modulation formats for short reach transmission employing a digital to analog converter for the RF signal generator, enabling pulse shaping and precompensation of the transmitter's frequency response. Details of the SiP Mach-Zehnder interfometer are presented. We study the system performance at various bit rates, PAM orders and propagation distances. To the best of our knowledge, we report the first demonstration of a 112 Gb/s transmission over 10 km of SMF fiber operating below pre-FEC BER threshold of 3.8 × 10−3 employing PAM-8 at 37.4 Gbaud using a fully packaged SiP modulator. An analytical model for the Q-factor metric applicable for multilevel PAM-N signaling is derived and accurately experimentally verified in the case of Gaussian noise limited detection. System performance is experimentally investigated and it is demonstrated that PAM order selection can be optimally chosen as a function of the desired throughput. We demonstrate the ability of the proposed transmitter to exhibit software-defined transmission for short reach applications by selecting PAM order, symbol rate and pulse shape.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IEEE Std 802.3ba Media Access Control Parameters, Physical Layers, and Management Parameters for 40 Gb/s and 100 Gb/s Operation, Approved by IEEE and ANSI on 17 June 2010, http://standards.ieee.org/findstds/standard/802.3ba-2010.html .
  2. IEEE P802.3bs 400 GbE Task Force, http://www.ieee802.org/3/bs/public/14_05/index.shtml .
  3. R. Rodes, J. Estaran, B. Li, M. Mueller, J. B. Jensen, T. Gründl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M. Amann, and I. Tafur Monroy, “100 Gb/s single VCSEL data transmission link,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper PDP5D.10.
    [Crossref]
  4. A. S. Karar and J. C. Cartledge, “Generation and detection of a 112-Gb/s dual-polarization signal using a directly modulated laser and half-cycle 16-QAM Nyquist-subcarrier-modulation,” in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2012), PDP Th.3.A.4.
    [Crossref]
  5. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32(4), 798–804 (2014).
    [Crossref]
  6. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in Proc. Optical Fiber Commun. Conf. (OFC) (2013), paper OM3H.1.
    [Crossref]
  7. Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,” in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2013), paper Th.1.F.3.
    [Crossref]
  8. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper M2I.5.
    [Crossref]
  9. T. Zuo, A. Tatarczak, M. I. Olmedo, J. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and T. Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper M2E.4.
    [Crossref]
  10. M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
    [Crossref] [PubMed]
  11. P. De Dobbelaere, A. Narasimha, A. Mekis, B. Welch, C. Bradbury, C. Sohn, D. Song, D. Foltz, D. Guckenberger, G. Masini, J. Schramm, J. White, J. Redman, K. Yokoyama, M. Harrison, M. Peterson, M. Mack, M. Sharp, R. LeBlanc, S. Abdalla, S. Gloeckner, S. Hovey, S. Jackson, S. Sahni, S. Yu, T. Pinguet, and Y. Liang, “Silicon photonics for high data rate optical interconnect,” in Proc. of IEEE Optical Interconnects Conf. (OI) (2012), paper WA2.
    [Crossref]
  12. D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
    [Crossref]
  13. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. Yang, Y. Ma, X. Tu, E. K. Chee, A. E. Lim, P. G. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350–30357 (2013).
    [Crossref] [PubMed]
  14. M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, M. Cyr, C. Paquet, M. Morsy-Osman, M. Chagnon, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” to appear in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2014).
  15. Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).
  16. L. Chen, C. R. Doerr, P. Dong, and Y. K. Chen, “Monolithic silicon chip with 10 modulator channels at 25 Gbps and 100-GHz spacing,” Opt. Express 19(26), B946–B951 (2011).
    [Crossref] [PubMed]
  17. P. Dong, L. Chen, and Y. K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [Crossref] [PubMed]
  18. R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27(3), 654–667 (1991).
    [Crossref]
  19. Institute of Microelectronics, Agency for Science, Technology and Research, (A*STAR), http://www.a-star.edu.sg/ime/ .
  20. NSERC CREATE Si-EPIC Program, http://www.siepic.ubc.ca .
  21. S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
    [Crossref]
  22. K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K.-O. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper OW4F.7.
    [Crossref]
  23. Meeting the Need For Speed - 40G/100G, http://www.oiforum.com/public/documents/Meeting_Speed_40G_100G.pdf .
  24. ITU-T Recommendation G.975.1 (2004), Appendix I.9.
  25. J. Cho, C. Xie, and P. J. Winzer, “Analysis of soft-decision FEC on non-AWGN channels,” Opt. Express 20(7), 7915–7928 (2012).
    [Crossref] [PubMed]
  26. J. Proakis, Digital Communications 4th ed. (McGraw Hill, 2001), Chap. 9.
  27. A. Oppenheim, R. Schafer, and J. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice Hall, 1999), Chap. 4.
  28. Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
    [Crossref]
  29. M. Morsy-Osman, M. Chagnon, Q. Zhuge, X. Xu, and D. V. Plant, “Non-data-aided feedforward timing recovery for flexible transceivers employing PDM-MQAM modulations,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper W3B.4.
    [Crossref]
  30. G. Agrawal, Lightwave Technology: Telecommunication Systems (John Wiley, 2005) Chap. 5.

2014 (3)

2013 (1)

2012 (2)

2011 (1)

2009 (1)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

2005 (1)

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

2003 (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

1991 (1)

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27(3), 654–667 (1991).
[Crossref]

Akiyama, S.

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

Baehr-Jones, T.

Bowers, J. E.

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Chagnon, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Chee, E. K.

Chen, L.

Chen, Y. K.

Cho, J.

Ciblat, P.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Cyr, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Davidson, C.-A.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Ding, R.

Doerr, C. R.

Dong, P.

Gagné, J.-F.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Guy, M.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Hochberg, M.

Itoh, H.

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

Jensen, J. B.

Kuramata, A.

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

Latrasse, C.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Liang, D.

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

Lim, A. E.

Liu, Y.

Lo, P. G.

Ma, Y.

Monroy, I. T.

Morsy-Osman, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Novack, A.

Olmedo, M. I.

Painchaud, Y.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Paquet, C.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Paquet, S.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Pelletier, F.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Pelletier, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Picard, M.-J.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Plant, D. V.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Popov, S.

Poulin, M.

M. Morsy-Osman, M. Chagnon, X. Xu, Q. Zhuge, M. Poulin, Y. Painchaud, M. Pelletier, C. Paquet, and D. V. Plant, “Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario,” Opt. Express 22(5), 5693–5730 (2014).
[Crossref] [PubMed]

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Robidoux, G.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Savard, S.

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Serpedin, E.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Streshinsky, M.

Takeuchi, T.

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

Tu, X.

Walker, R. G.

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27(3), 654–667 (1991).
[Crossref]

Wang, Y.

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

Winzer, P. J.

Xie, C.

Xu, X.

Yamamoto, T.

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

Yang, Y.

Zhong, Q.

Zhuge, Q.

Zuo, T.

Electron. Lett. (1)

D. Liang and J. E. Bowers, “Photonic integration: Si or InP substrates?” Electron. Lett. 45(12), 578–581 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron. 27(3), 654–667 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Akiyama, H. Itoh, T. Takeuchi, A. Kuramata, and T. Yamamoto, “Wide-wavelength-band (30 nm) 10-Gb/s operation of InP-based Mach-Zehnder modulator with constant driving voltage of 2 Vpp,” IEEE Photon. Technol. Lett. 17(7), 1408–1410 (2005).
[Crossref]

IEEE Trans. Commun. (1)

Y. Wang, E. Serpedin, and P. Ciblat, “An alternative blind feedforward symbol timing estimator using two samples per symbol,” IEEE Trans. Commun. 51(9), 1451–1455 (2003).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Proc. SPIE (1)

Y. Painchaud, M. Poulin, F. Pelletier, C. Latrasse, J.-F. Gagné, S. Savard, G. Robidoux, M.-J. Picard, S. Paquet, C.-A. Davidson, M. Pelletier, M. Cyr, C. Paquet, M. Guy, M. Morsy-Osman, M. Chagnon, and D. V. Plant, “Silicon-based products and solutions,” Proc. SPIE 8988, 89880L (2014).

Other (19)

J. Proakis, Digital Communications 4th ed. (McGraw Hill, 2001), Chap. 9.

A. Oppenheim, R. Schafer, and J. Buck, Discrete-Time Signal Processing, 2nd ed. (Prentice Hall, 1999), Chap. 4.

M. Morsy-Osman, M. Chagnon, Q. Zhuge, X. Xu, and D. V. Plant, “Non-data-aided feedforward timing recovery for flexible transceivers employing PDM-MQAM modulations,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper W3B.4.
[Crossref]

G. Agrawal, Lightwave Technology: Telecommunication Systems (John Wiley, 2005) Chap. 5.

K. Prosyk, A. Ait-Ouali, C. Bornholdt, T. Brast, M. Gruner, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, K.-O. Velthaus, and I. Woods, “High performance 40GHz InP Mach-Zehnder modulator,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper OW4F.7.
[Crossref]

Meeting the Need For Speed - 40G/100G, http://www.oiforum.com/public/documents/Meeting_Speed_40G_100G.pdf .

ITU-T Recommendation G.975.1 (2004), Appendix I.9.

P. De Dobbelaere, A. Narasimha, A. Mekis, B. Welch, C. Bradbury, C. Sohn, D. Song, D. Foltz, D. Guckenberger, G. Masini, J. Schramm, J. White, J. Redman, K. Yokoyama, M. Harrison, M. Peterson, M. Mack, M. Sharp, R. LeBlanc, S. Abdalla, S. Gloeckner, S. Hovey, S. Jackson, S. Sahni, S. Yu, T. Pinguet, and Y. Liang, “Silicon photonics for high data rate optical interconnect,” in Proc. of IEEE Optical Interconnects Conf. (OI) (2012), paper WA2.
[Crossref]

M. Poulin, C. Latrasse, J.-F. Gagné, Y. Painchaud, M. Cyr, C. Paquet, M. Morsy-Osman, M. Chagnon, S. Lessard, and D. V. Plant, “107 Gb/s PAM-4 transmission over 10 km using a SiP series push-pull modulator at 1310 nm,” to appear in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2014).

Institute of Microelectronics, Agency for Science, Technology and Research, (A*STAR), http://www.a-star.edu.sg/ime/ .

NSERC CREATE Si-EPIC Program, http://www.siepic.ubc.ca .

W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J. C. Rasmussen, and T. Drenski, “100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core,” in Proc. Optical Fiber Commun. Conf. (OFC) (2013), paper OM3H.1.
[Crossref]

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,” in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2013), paper Th.1.F.3.
[Crossref]

T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, and J. Rasmussen, “Experimental demonstration of 448-Gbps+ DMT transmission over 30-km SMF,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper M2I.5.
[Crossref]

T. Zuo, A. Tatarczak, M. I. Olmedo, J. Estaran, J. B. Jensen, Q. Zhong, X. Xu, and T. Monroy, “O-band 400 Gbit/s client side optical transmission link,” in Proc. Optical Fiber Commun. Conf. (OFC) (2014), paper M2E.4.
[Crossref]

IEEE Std 802.3ba Media Access Control Parameters, Physical Layers, and Management Parameters for 40 Gb/s and 100 Gb/s Operation, Approved by IEEE and ANSI on 17 June 2010, http://standards.ieee.org/findstds/standard/802.3ba-2010.html .

IEEE P802.3bs 400 GbE Task Force, http://www.ieee802.org/3/bs/public/14_05/index.shtml .

R. Rodes, J. Estaran, B. Li, M. Mueller, J. B. Jensen, T. Gründl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. J. Larsen, M. Amann, and I. Tafur Monroy, “100 Gb/s single VCSEL data transmission link,” in Proc. Optical Fiber Commun. Conf. (OFC) (2012), paper PDP5D.10.
[Crossref]

A. S. Karar and J. C. Cartledge, “Generation and detection of a 112-Gb/s dual-polarization signal using a directly modulated laser and half-cycle 16-QAM Nyquist-subcarrier-modulation,” in Proc. Eur. Conf. Optical Commun Conf. (ECOC) (2012), PDP Th.3.A.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic of the series push-pull Mach-Zehnder modulator.

Fig. 2
Fig. 2

Photograph of the 6 mm long series push-pull modulator. The portion of the layout supporting the grating couplers is not shown.

Fig. 3
Fig. 3

Characterization of the series push-pull modulator: (a) transmission spectrum at different applied voltages; (b) DC circuit used to mimic the push-pull operation (c) Vπ as a function of the bias voltage applied to the central electrode; (d) phase shift as a function of the voltage applied to the pn junction series (e) on-chip insertion loss (f) thermal phase shifter efficiency.

Fig. 4
Fig. 4

(a) EO frequency response of the modulator chip (blue) and of the packaged modulator (red). (b) S11 of the modulator chip and of the packaged modulator.

Fig. 5
Fig. 5

Picture of the fully packaged SiP modulator.

Fig. 6
Fig. 6

Experimental setup.

Fig. 7
Fig. 7

DSP stack at the (a) transmitter and (b) receiver side.

Fig. 8
Fig. 8

Eye diagrams, after 10 km, for (a) PAM-2 at 30 Gb/s, (b) PAM-2 at 60 Gb/s, (c) PAM-4 at 60 Gb/s, (d) PAM-4 at 112 Gb/s, (e) PAM-8 at 60 Gb/s, (f) PAM-8 at 112 Gb/s, (g) PAM-16 at 50 Gb/s and (h) PAM-16 at 60 Gb/s. All eyes obtained after receiver DSP.

Fig. 9
Fig. 9

Histogram of received symbols and probability density function (PDF) of PAM-8 after (a) 10 km, giving a BER of 3.6 × 10−3 and after (b) 20 km, giving a BER of 1.56 × 10−2.

Fig. 10
Fig. 10

Probability distribution function of PAM-16 at 50 Gbits/s, after 10 km. Blue: received symbol distribution. Red: PDF computed from of mean μ and variance σ2 of each 16 level.

Fig. 11
Fig. 11

Histogram of received symbols and aggregate PDFs for signals of high Q (low BER), for (a) PAM-2 and (b) PAM-4.

Fig. 12
Fig. 12

(a) SNR, (b) Q-factor [dB] and (c) BER for PAM orders 2, 4, 8 and 16, after propagation distances of 0, 2, 10 and 20 km, for varying bitrates. Figure (d) shows the BER from error counting against Q(BERQ). Black solid curve in (d) represents the theoretical BERQ(Q) relation of Eq. (3). Hashed line in (c) and (d) is BER = 3.8 × 10−3 threshold.

Fig. 13
Fig. 13

(a) BER and (b) Q-factor for PAM-2, −4 and −8, for varying received signal power. For both (a) and (b), PAM-4 and −8 are running at 107 Gb/s and PAM-2 at 60 Gb/s.

Fig. 14
Fig. 14

System performance assessment for varying PAM orders, at different baud rates, for varying roll-off factors. (a) Q for PAM-2, (b) BER for PAM-2, (c) Q for PAM-4, (d) BER for PAM-4, (e) Q for PAM-8, (f) BER for PAM-8. Hashed black line is BER of 3.8 × 10−3 or the Q equivalent.

Fig. 15
Fig. 15

(a) Q-factor and (b) BER for PAM-4 and PAM-8, at 112 Gb/s, at varying distances.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

BE R Q = 1 2 ( 1 2 erfc( μ 2 I th σ 2 2 )+ 1 2 erfc( I th μ 1 σ 1 2 ) ).
I th = μ 1 σ 2 2 μ 2 σ 1 2 + σ 2 σ 1 ( μ 2 μ 1 ) 2 +2( σ 2 2 σ 1 2 )( ln( σ 2 / σ 1 ) ) σ 2 2 σ 1 2 .
Q= 2 erfcinv( 2BE R Q ).
BE R Q = 1 log 2 (N) i=1 N p( I i )( P( I i1 | I i )+P( I i+1 | I i ) ) .
BE R Q = 1 N log 2 (N) 1 2 i=1 N [ erfc( | μ ^ i I ilow th | σ ^ i 2 )+erfc( | μ ^ i I ihigh th | σ ^ i 2 ) ] .
5 log 10 ( N i 2 1 N k 2 1 )+excess loss [dB].

Metrics