Abstract

Holographic particle image velocimetry allows tracking particle trajectories in time and space by means of holography. However, the drawback of the technique is that in the three-dimensional particle distribution reconstructed from a hologram, the individual particles can hardly be resolved due to the superimposed out-of-focus signal from neighboring particles. We demonstrate here a three-dimensional volumetric deconvolution applied to the reconstructed wavefront which results in resolving all particles simultaneously in three-dimensions. Moreover, we apply the three-dimensional volumetric deconvolution to reconstructions of a time-dependent sequence of holograms of an ensemble of polystyrene spheres moving in water. From each hologram we simultaneously resolve all particles in the ensemble in three dimensions and from the sequence of holograms we obtain the time-resolved trajectories of individual polystyrene spheres.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Depth-resolved holographic reconstructions by three-dimensional deconvolution

Tatiana Latychevskaia, Fabian Gehri, and Hans-Werner Fink
Opt. Express 18(21) 22527-22544 (2010)

Recent advances in holographic 3D particle tracking

Pasquale Memmolo, Lisa Miccio, Melania Paturzo, Giuseppe Di Caprio, Giuseppe Coppola, Paolo A. Netti, and Pietro Ferraro
Adv. Opt. Photon. 7(4) 713-755 (2015)

Holographic deconvolution microscopy for high-resolution particle tracking

Lisa Dixon, Fook Chiong Cheong, and David G. Grier
Opt. Express 19(17) 16410-16417 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. Grant, “Particle image velocimetry: A review,” Proc. Inst. Mech. Eng. Part C. 211, 55–76 (1997).
  2. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
    [Crossref]
  3. J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
    [Crossref]
  4. X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
    [Crossref]
  5. D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33(30), 7159–7170 (1994).
    [Crossref] [PubMed]
  6. K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol. 6(6), 742–753 (1995).
    [Crossref]
  7. Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
    [Crossref]
  8. Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).
    [Crossref]
  9. Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44(36), 7697–7708 (2005).
    [Crossref] [PubMed]
  10. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23(22), 4140–4148 (1984).
    [Crossref] [PubMed]
  11. H. Meng and F. Hussain, “Holographic particle velocimetry – a three-dimensional measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
    [Crossref]
  12. J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
    [Crossref]
  13. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367–5375 (2002).
    [Crossref] [PubMed]
  14. W. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28(3), 164–166 (2003).
    [Crossref] [PubMed]
  15. G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003).
    [Crossref] [PubMed]
  16. C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
    [Crossref]
  17. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
    [Crossref] [PubMed]
  18. M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
    [Crossref]
  19. S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
    [Crossref]
  20. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
    [Crossref] [PubMed]
  21. Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
    [Crossref]
  22. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Stuttg.) 119(9), 419–423 (2008).
    [Crossref]
  23. W. Chen, C. G. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009).
    [Crossref]
  24. Q. N. Lü, Y. L. Chen, R. Yuan, B. Z. Ge, Y. Gao, and Y. M. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48(36), 7000–7007 (2009).
    [Crossref] [PubMed]
  25. T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18(21), 22527–22544 (2010).
    [Crossref] [PubMed]
  26. N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18(8), 7807–7819 (2010).
    [Crossref] [PubMed]
  27. L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19(17), 16410–16417 (2011).
    [Crossref] [PubMed]
  28. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37(4), 752–754 (2012).
    [Crossref] [PubMed]
  29. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
    [Crossref] [PubMed]
  30. D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52(16), 3790–3801 (2013).
    [Crossref] [PubMed]
  31. M. Seifi, C. Fournier, N. Grosjean, L. Méès, J. L. Marié, and L. Denis, “Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach,” Opt. Express 21(23), 27964–27980 (2013).
    [Crossref] [PubMed]
  32. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
    [Crossref] [PubMed]
  33. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).
  34. F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
    [Crossref] [PubMed]
  35. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
    [Crossref]
  36. R. Hickling, “Holography of liquid droplets,” J. Opt. Soc. Am. 59(10), 1334–1339 (1969).
    [Crossref]
  37. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
    [Crossref] [PubMed]
  38. T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
    [Crossref] [PubMed]
  39. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004).

2014 (1)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (1)

2010 (4)

2009 (3)

2008 (1)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Stuttg.) 119(9), 419–423 (2008).
[Crossref]

2007 (1)

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

2006 (2)

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

2005 (2)

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44(36), 7697–7708 (2005).
[Crossref] [PubMed]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

2004 (4)

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
[Crossref]

M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
[Crossref]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (1)

2000 (3)

Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
[Crossref]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).
[Crossref]

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[Crossref]

1997 (2)

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
[Crossref]

I. Grant, “Particle image velocimetry: A review,” Proc. Inst. Mech. Eng. Part C. 211, 55–76 (1997).

1995 (2)

1994 (1)

1991 (1)

H. Meng and F. Hussain, “Holographic particle velocimetry – a three-dimensional measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[Crossref]

1984 (1)

1969 (1)

Adrian, R. J.

Allano, D.

Barnhart, D. H.

Brunel, M.

Chen, J.

Chen, W.

W. Chen, C. G. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009).
[Crossref]

Chen, Y. L.

Cheong, F. C.

Coetmellec, S.

M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
[Crossref]

Coëtmellec, S.

Denis, L.

Dixon, L.

Ducottet, C.

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
[Crossref]

Fink, H.-W.

Fournel, T.

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
[Crossref]

Fournier, C.

M. Seifi, C. Fournier, N. Grosjean, L. Méès, J. L. Marié, and L. Denis, “Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach,” Opt. Express 21(23), 27964–27980 (2013).
[Crossref] [PubMed]

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
[Crossref]

Gao, J.

Gao, Y.

Garcia-Sucerquia, J.

J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37(4), 752–754 (2012).
[Crossref] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Stuttg.) 119(9), 419–423 (2008).
[Crossref]

Ge, B. Z.

Gehri, F.

Gouesbet, G.

Grant, I.

I. Grant, “Particle image velocimetry: A review,” Proc. Inst. Mech. Eng. Part C. 211, 55–76 (1997).

Grehan, G.

Grier, D. G.

Grosjean, N.

Guildenbecher, D. R.

Hickling, R.

Hinsch, K. D.

K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol. 6(6), 742–753 (1995).
[Crossref]

Hong, J.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Hussain, F.

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

H. Meng and F. Hussain, “Holographic particle velocimetry – a three-dimensional measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[Crossref]

Ito, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Jericho, M. H.

Jericho, S. K.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Stuttg.) 119(9), 419–423 (2008).
[Crossref]

Katz, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
[Crossref]

Kim, M. K.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Kompenhans, J.

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Kreuzer, H. J.

Krishnatreya, B. J.

Kunugi, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Latychevskaia, T.

Lebrun, D.

Liu, C.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Lü, Q. N.

Malek, M.

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
[Crossref] [PubMed]

M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
[Crossref]

Malkiel, E.

Marié, J. L.

Méès, L.

Meinertzhagen, I. A.

Meng, H.

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44(36), 7697–7708 (2005).
[Crossref] [PubMed]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003).
[Crossref] [PubMed]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).
[Crossref]

Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
[Crossref]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

H. Meng and F. Hussain, “Holographic particle velocimetry – a three-dimensional measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[Crossref]

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[Crossref]

Ozkul, C.

M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
[Crossref]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003).
[Crossref] [PubMed]

Papen, G. C.

Pu, Y.

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44(36), 7697–7708 (2005).
[Crossref] [PubMed]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).
[Crossref]

Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
[Crossref]

Quan, C. G.

W. Chen, C. G. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009).
[Crossref]

Remacha, C.

Restrepo, J. F.

Reu, P. L.

Satake, S.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Sato, K.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Schroder, A.

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Seifi, M.

Shen, G. X.

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Sheng, J.

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

Slimani, F.

Song, X.

Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
[Crossref]

Taniguchi, J.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Tao, B.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
[Crossref]

Tay, C. J.

W. Chen, C. G. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009).
[Crossref]

Verrier, N.

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

Xu, W.

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[Crossref]

Yu, X.

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Yuan, R.

Zhang, J.

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
[Crossref]

Zhang, Y. G.

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Zhang, Y. M.

Annu. Rev. Fluid Mech. (1)

J. Katz and J. Sheng, “Applications of holography in fluid mechanics and particle dynamics,” Annu. Rev. Fluid Mech. 42(1), 531–555 (2010).
[Crossref]

Appl. Opt. (9)

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt. 23(22), 4140–4148 (1984).
[Crossref] [PubMed]

D. H. Barnhart, R. J. Adrian, and G. C. Papen, “Phase-conjugate holographic system for high-resolution particle-image velocimetry,” Appl. Opt. 33(30), 7159–7170 (1994).
[Crossref] [PubMed]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41(25), 5367–5375 (2002).
[Crossref] [PubMed]

G. Pan and H. Meng, “Digital holography of particle fields: reconstruction by use of complex amplitude,” Appl. Opt. 42(5), 827–833 (2003).
[Crossref] [PubMed]

Q. N. Lü, Y. L. Chen, R. Yuan, B. Z. Ge, Y. Gao, and Y. M. Zhang, “Trajectory and velocity measurement of a particle in spray by digital holography,” Appl. Opt. 48(36), 7000–7007 (2009).
[Crossref] [PubMed]

Y. Pu and H. Meng, “Four-dimensional dynamic flow measurement by holographic particle image velocimetry,” Appl. Opt. 44(36), 7697–7708 (2005).
[Crossref] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45(16), 3893–3901 (2006).
[Crossref] [PubMed]

D. R. Guildenbecher, J. Gao, P. L. Reu, and J. Chen, “Digital holography simulations and experiments to quantify the accuracy of 3D particle location and 2D sizing using a proposed hybrid method,” Appl. Opt. 52(16), 3790–3801 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

W. Chen, C. G. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95(20), 201103 (2009).
[Crossref]

Exp. Fluids (3)

Y. Pu, X. Song, and H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29(7), S117–S128 (2000).
[Crossref]

Y. Pu and H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29(2), 184–197 (2000).
[Crossref]

J. Zhang, B. Tao, and J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23(5), 373–381 (1997).
[Crossref]

Fluid Dyn. Res. (1)

H. Meng and F. Hussain, “Holographic particle velocimetry – a three-dimensional measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (4)

C. Fournier, C. Ducottet, and T. Fournel, “Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image,” Meas. Sci. Technol. 15(4), 686–693 (2004).
[Crossref]

M. Malek, D. Allano, S. Coetmellec, C. Ozkul, and D. Lebrun, “Digital in-line holography for three-dimensional-two-components particle tracking velocimetry,” Meas. Sci. Technol. 15(4), 699–705 (2004).
[Crossref]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15(4), 673–685 (2004).
[Crossref]

K. D. Hinsch, “Three-dimensional particle velocimetry,” Meas. Sci. Technol. 6(6), 742–753 (1995).
[Crossref]

Opt. Eng. (2)

X. Yu, J. Hong, C. Liu, and M. K. Kim, “Review of digital holographic microscopy for three-dimensional profiling and tracking,” Opt. Eng. 53(11), 112306 (2014).
[Crossref]

Y. G. Zhang, G. X. Shen, A. Schroder, and J. Kompenhans, “Influence of some recording parameters on digital holographic particle image velocimetry,” Opt. Eng. 45(7), 075801 (2006).
[Crossref]

Opt. Express (8)

M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field extraction,” Opt. Express 12(10), 2270–2279 (2004).
[Crossref] [PubMed]

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
[Crossref] [PubMed]

M. Seifi, C. Fournier, N. Grosjean, L. Méès, J. L. Marié, and L. Denis, “Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach,” Opt. Express 21(23), 27964–27980 (2013).
[Crossref] [PubMed]

T. Latychevskaia and H.-W. Fink, “Simultaneous reconstruction of phase and amplitude contrast from a single holographic record,” Opt. Express 17(13), 10697–10705 (2009).
[Crossref] [PubMed]

N. Verrier, C. Remacha, M. Brunel, D. Lebrun, and S. Coëtmellec, “Micropipe flow visualization using digital in-line holographic microscopy,” Opt. Express 18(8), 7807–7819 (2010).
[Crossref] [PubMed]

F. C. Cheong, B. J. Krishnatreya, and D. G. Grier, “Strategies for three-dimensional particle tracking with holographic video microscopy,” Opt. Express 18(13), 13563–13573 (2010).
[Crossref] [PubMed]

T. Latychevskaia, F. Gehri, and H.-W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18(21), 22527–22544 (2010).
[Crossref] [PubMed]

L. Dixon, F. C. Cheong, and D. G. Grier, “Holographic deconvolution microscopy for high-resolution particle tracking,” Opt. Express 19(17), 16410–16417 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Laser Technol. 32(7-8), 567–574 (2000).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12(6), 442–444 (2005).
[Crossref]

Optik (Stuttg.) (1)

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, M. H. Jericho, and H. J. Kreuzer, “4-D imaging of fluid flow with digital in-line holographic microscopy,” Optik (Stuttg.) 119(9), 419–423 (2008).
[Crossref]

Phys. Rev. Lett. (1)

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

Proc. Inst. Mech. Eng. Part C. (1)

I. Grant, “Particle image velocimetry: A review,” Proc. Inst. Mech. Eng. Part C. 211, 55–76 (1997).

Other (2)

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2004).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999).

Supplementary Material (1)

» Media 1: MOV (469 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental scheme for recording optical inline holograms. Laser light of 532 nm wavelength passes through a cuvette filled with distilled water. A drop of aqueous solution of 10 μm diameter polystyrene spheres is immersed into a cuvette and the moving spheres are imaged by means of a microscope objective (magnification = 40, N.A. = 0.65) which projects the hologram of the moving spheres onto a screen made up of a translucent Mylar-like material.
Fig. 2
Fig. 2 An individual hologram out of a sequence of experimental holograms is shown at left, the background image in the middle and the normalized hologram at right. The objects apparent in the background are due to scratches on the cuvette surface.
Fig. 3
Fig. 3 Amplitude of the object wave distribution reconstructed from one hologram out of the sequence of holograms. Reconstructions at z = 2.66 mm and 4.22 mm from the hologram plane are shown.
Fig. 4
Fig. 4 Simulated hologram of a point scatterer and the distribution of the reconstructed amplitude in the XZ plane.
Fig. 5
Fig. 5 Three successive holograms out of the sequence and their three-dimensional reconstruction before and after applying the three-dimensional volumetric deconvolution (see Media 1) are shown. The area of the reconstructed volume amounts to 625 μm × 626 μm × 6000 μm.
Fig. 6
Fig. 6 Reconstructions before and after performing a three-dimensional volumetric deconvolution. (a) Profiles of the reconstructed intensity distribution of an individual scatterer along the axial direction (z-axis). (b) Reconstructed intensity distributions summed up along axial direction before a three-dimensional deconvolution and (c) after three-dimensional deconvolution.
Fig. 7
Fig. 7 Trajectories of four individual microspheres. (a) Three-dimensional and projected views. The area of the reconstructed volume amounts to 625 μm × 626 μm × 6000 μm. (b) Vertical position of the particles as a function of time. The sedimentation velocity of each particle is estimated from the linear fitting. The pairs of closely spaced particles, red–green (34 μm distance in xz-plane) and blue–cyan (300 μm distance in xz-plane) exhibit similar velocities.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

δ= λ 2 Ω 2
U( P 0 )= 1 iλ Σ U( P 1 ) expikr r cosϑ ds,
U Object ( x,y,z )= FT 1 [ FT{ H( X,Y ) }exp( 2πiz λ 1 ( λ f x ) 2 ( λ f y ) 2 ) ],
H PSF ( X,Y )= | FT 1 [ FT{ 1δ( x,y ) }exp( 2πiz λ 1 ( λ f x ) 2 ( λ f y ) 2 ) ] | 2 ,
U PSF ( x,y,z )= FT 1 [ FT{ H PSF ( X,Y ) }exp( 2πiz λ 1 ( λ f x ) 2 ( λ f y ) 2 ) ],
o(x,y,z)= A O (x,y,z )FT 1 ( A F (X,Y,Z) FT ( | U Object (x,y,z) | 2 ) FT ( | U PSF (x,y,z) | 2 +β ) ),
A F (X,Y,Z)=1 if X 2 + Y 2 + Z 2 N F , 0 if X 2 + Y 2 + Z 2 > N F ,
A O (x,y,z)=1 if x 2 + y 2 + z 2 N O , 0 if x 2 + y 2 + z 2 > N O ,

Metrics