Abstract

We examine the question of coherent perfect absorption (CPA) of single photons, and more generally, of the quantum fields by a macroscopic medium. We show the CPA of path entangled single photons in a Fabry-Perot interferometer containing an absorptive medium. The frequency of perfect absorption can be controlled by changing the interferometer parameters like the reflectivity and the complex dielectric constant of the material. We exhibit similar results for path entangled photons in micro-ring resonators. For entangled fields like the ones produced by a down converter the CPA aspect is evident in phase sensitive detection schemes such as in measurements of the squeezing spectrum.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
    [CrossRef]
  2. J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
    [CrossRef] [PubMed]
  3. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
    [CrossRef] [PubMed]
  4. V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
    [CrossRef] [PubMed]
  5. G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
    [CrossRef]
  6. A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
    [CrossRef] [PubMed]
  7. F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
    [CrossRef] [PubMed]
  8. J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
    [CrossRef]
  9. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
    [CrossRef]
  10. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
    [CrossRef]
  11. W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
    [CrossRef] [PubMed]
  12. A. D. Stone, “Gobbling up light with an antilaser,” Physics Today 64(11), 68–69 (2011).
    [CrossRef]
  13. S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–1485 (2007).
    [CrossRef]
  14. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
    [CrossRef] [PubMed]
  15. C. F. Gmachl, “Laser science: suckers for light,” Nature (London) 467, 37–39 (2010).
    [CrossRef]
  16. S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
    [CrossRef]
  17. An early work [G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B. 8, 4768–4779 (1973), Sec. III.] presents general conditions under which all the out fields from a linear dielectric medium vanish. In particular, explicit conditions for spherical geometries were given.
    [CrossRef]
  18. For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
    [CrossRef] [PubMed]
  19. S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
    [CrossRef]
  20. V. Klimov, S. Sun, and G. -Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13071–13081 (2012).
    [CrossRef]
  21. M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
    [CrossRef]
  22. S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012).
    [CrossRef] [PubMed]
  23. S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
    [CrossRef] [PubMed]
  24. J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
    [CrossRef]
  25. J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18, 25702–25711 (2010).
    [CrossRef] [PubMed]
  26. J. Yoon, W. J. Park, K. J. Lee, S. H. Song, and R. Magnusson, “Surface-plasmon mediated total absorption of light into silicon,” Opt. Express 19, 20673–20680 (2011).
    [CrossRef] [PubMed]
  27. P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
    [CrossRef] [PubMed]
  28. A. Mock, “Low-power all-optical switch based on time-reversed microring laser,” IEEE Photon. J. 4, 2229–2235 (2012).
    [CrossRef]
  29. R. R. Grote, J. B. Driscoll, and R. M. Osgood, “Integrated optical modulators and switches using coherent perfect loss,” Opt. Lett. 38, 3001–3004 (2013).
    [CrossRef] [PubMed]
  30. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
    [CrossRef] [PubMed]
  31. S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
    [CrossRef] [PubMed]
  32. O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
    [CrossRef] [PubMed]
  33. A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
    [CrossRef] [PubMed]
  34. J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
    [CrossRef]
  35. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
    [CrossRef] [PubMed]
  36. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, London1958), Page 7.
  37. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  38. M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
    [CrossRef]
  39. D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
    [CrossRef] [PubMed]
  40. S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
    [CrossRef]
  41. The perfect absorption of an infintely long line source of dipoles by metamaterials has been considered by Guo and his coworkers: G. -Y. Guo, V. Klimov, S. Sun, and W. -J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21(9), 11338–11348 (2013).
  42. G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002).
    [CrossRef]
  43. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
    [CrossRef]
  44. G. S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2012), Chap. 5.
    [CrossRef]
  45. U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013).
    [CrossRef] [PubMed]
  46. J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
    [CrossRef]
  47. D. F. Walls and G. J. Milburn, Quantum Optics (Springer- Verlag, Berlin, 1994), Chap. 7.
    [CrossRef]
  48. See Ref. [47], p. 124, Eq. (7.18).
  49. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
    [CrossRef] [PubMed]
  50. The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
    [CrossRef]
  51. S. D. Gupta and G. S. Agarwal, “Two-photon quantum interference in plasmonics: theory and applications,” Opt. Lett. 39, 390–393 (2014).
    [CrossRef] [PubMed]
  52. G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett. 97, 023601 (2006).
    [CrossRef] [PubMed]
  53. J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
    [CrossRef] [PubMed]
  54. H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009).
    [CrossRef]
  55. C. W. Gardiner, “Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing,” Phys. Rev. Lett. 56, 1917–1920 (1986).
    [CrossRef] [PubMed]

2014 (1)

2013 (8)

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

The perfect absorption of an infintely long line source of dipoles by metamaterials has been considered by Guo and his coworkers: G. -Y. Guo, V. Klimov, S. Sun, and W. -J. Zheng, “Metamaterial slab-based super-absorbers and perfect nanodetectors for single dipole sources,” Opt. Express 21(9), 11338–11348 (2013).

U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013).
[CrossRef] [PubMed]

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

R. R. Grote, J. B. Driscoll, and R. M. Osgood, “Integrated optical modulators and switches using coherent perfect loss,” Opt. Lett. 38, 3001–3004 (2013).
[CrossRef] [PubMed]

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

2012 (13)

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

A. Mock, “Low-power all-optical switch based on time-reversed microring laser,” IEEE Photon. J. 4, 2229–2235 (2012).
[CrossRef]

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

V. Klimov, S. Sun, and G. -Y. Guo, “Coherent perfect nanoabsorbers based on negative refraction,” Opt. Express 20, 13071–13081 (2012).
[CrossRef]

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012).
[CrossRef] [PubMed]

S. Dutta-Gupta, R. Deshmukh, A. V. Gopal, O. J. F. Martin, and S. D. Gupta, “Coherent perfect absorption mediated anomalous reflection and refraction,” Opt. Lett. 37, 4452–4454 (2012).
[CrossRef] [PubMed]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[CrossRef]

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

2011 (4)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

A. D. Stone, “Gobbling up light with an antilaser,” Physics Today 64(11), 68–69 (2011).
[CrossRef]

J. Yoon, W. J. Park, K. J. Lee, S. H. Song, and R. Magnusson, “Surface-plasmon mediated total absorption of light into silicon,” Opt. Express 19, 20673–20680 (2011).
[CrossRef] [PubMed]

2010 (5)

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

C. F. Gmachl, “Laser science: suckers for light,” Nature (London) 467, 37–39 (2010).
[CrossRef]

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

J. Yoon, K. H. Seol, S. H. Song, and R. Magnusson, “Critical coupling in dissipative surface-plasmon resonators with multiple ports,” Opt. Express 18, 25702–25711 (2010).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

2009 (2)

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
[CrossRef]

H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009).
[CrossRef]

2008 (3)

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

2007 (2)

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

S. Dutta-Gupta, “Strong-interaction-mediated critical coupling at two distinct frequencies,” Opt. Lett. 32, 1483–1485 (2007).
[CrossRef]

2006 (3)

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett. 97, 023601 (2006).
[CrossRef] [PubMed]

2004 (1)

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
[CrossRef] [PubMed]

2002 (2)

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002).
[CrossRef]

2001 (1)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

1986 (2)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

C. W. Gardiner, “Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing,” Phys. Rev. Lett. 56, 1917–1920 (1986).
[CrossRef] [PubMed]

1973 (1)

An early work [G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B. 8, 4768–4779 (1973), Sec. III.] presents general conditions under which all the out fields from a linear dielectric medium vanish. In particular, explicit conditions for spherical geometries were given.
[CrossRef]

Agarwal, G. S.

S. D. Gupta and G. S. Agarwal, “Two-photon quantum interference in plasmonics: theory and applications,” Opt. Lett. 39, 390–393 (2014).
[CrossRef] [PubMed]

S. Dutta-Gupta, O. J. F. Martin, S. D. Gupta, and G. S. Agarwal, “Controllable coherent perfect absorption in a composite film,” Opt. Express 20, 1330–1336 (2012).
[CrossRef] [PubMed]

G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett. 97, 023601 (2006).
[CrossRef] [PubMed]

G. S. Agarwal and S. D. Gupta, “Reciprocity relations for reflected amplitudes,” Opt. Lett. 27, 1205–1207 (2002).
[CrossRef]

An early work [G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B. 8, 4768–4779 (1973), Sec. III.] presents general conditions under which all the out fields from a linear dielectric medium vanish. In particular, explicit conditions for spherical geometries were given.
[CrossRef]

G. S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2012), Chap. 5.
[CrossRef]

Aharonovich, I.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Aiello, A.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Alber, G.

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
[CrossRef]

Alibart, O.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Andersen, U. L.

U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013).
[CrossRef] [PubMed]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Arnold, C.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Aspect, A.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Baldi, P.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Bardou, N.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Bellini, M.

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
[CrossRef] [PubMed]

Bertocchi, G.

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Brunner, N.

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Cao, H.

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

Castelletto, S.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Chekhova, M. V.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Chen, D. -R.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Chen, H.

H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009).
[CrossRef]

Chong, Y.

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

Chong, Y. D.

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

Chuu, C. S.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Cirac, J. I.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Collin, S.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Coudreau, T.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

de Riedmatten, H.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

de Vasconcellos, S. M.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Deshmukh, R.

Dirac, P. A. M.

P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, London1958), Page 7.

Donohue, J. M.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

Driscoll, J. B.

Du, S.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Duan, L.-M.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Dutta-Gupta, S.

Fedrizzi, A.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

Feng, Q.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

Feng, S.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

Förtsch, M.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Fürst, J. U.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Galopin, E.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Gao, F.

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

Gardiner, C. W.

C. W. Gardiner, “Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing,” Phys. Rev. Lett. 56, 1917–1920 (1986).
[CrossRef] [PubMed]

Gazzano, O.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Ge, L.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

Ghenuche, P.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Gibson, B. C.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Gisin, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Gmachl, C. F.

C. F. Gmachl, “Laser science: suckers for light,” Nature (London) 467, 37–39 (2010).
[CrossRef]

Gopal, A. V.

Gotzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Grangier, P.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Grosshans, F.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

Grote, R. R.

Guo, G. -C.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Guo, G. -Y.

Gupta, S. D.

Hadden, J. P.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Haïdar, R.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Halterman, K.

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Hu, C.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

Imamoglu, A.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[CrossRef] [PubMed]

Jacques, V.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

Kaiser, F.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Kennard, J. E.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Kim, M. S.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Klimov, V.

Koh, G. M.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[CrossRef]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Lanco, L.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Laroche, M.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Lavoie, J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

Lee, J.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Lee, K. J.

Lemaître, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Leuchs, G.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
[CrossRef]

Li, C. -F.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Li, Y. -L.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Liu, C.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Longhi, S.

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

Loy, M. M. T.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Lukin, M. D.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Luo, X.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

Magnusson, R.

Maier, S. A.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Marquardt, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Marseglia, L.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Martin, O. J. F.

Matthews, J. C. F.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

McEnery, K. R.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer- Verlag, Berlin, 1994), Chap. 7.
[CrossRef]

Milman, P.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

Mock, A.

A. Mock, “Low-power all-optical switch based on time-reversed microring laser,” IEEE Photon. J. 4, 2229–2235 (2012).
[CrossRef]

Noh, H.

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

Nowak, A.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

O’Brien, J. L.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

Osgood, R. M.

Ostrowsky, D. B.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Özdemir, S. K.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Park, W. J.

Patton, B. R.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Pelouard, J. -L.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Peruzzo, A.

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

Pinotsi, D.

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[CrossRef] [PubMed]

Politi, A.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Popescu, S.

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

Prawer, S.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Pu, M.

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

Ralph, T. C.

U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013).
[CrossRef] [PubMed]

Rarity, J. G.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

Resch, K. J.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

Roch, J.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

Roch, J. F.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Sagnes, I.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Sangouard, N.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
[CrossRef]

Senellart, P.

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

Seol, K. H.

Shadbolt, P.

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

Silberhorn, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Simon, C.

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Sinclair, A. G.

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

Song, S. H.

Stobinska, M.

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
[CrossRef]

Stone, A. D.

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

A. D. Stone, “Gobbling up light with an antilaser,” Physics Today 64(11), 68–69 (2011).
[CrossRef]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

Strekalov, D.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Sun, S.

Tame, M. S.

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Tang, J. -S.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Tanzilli, S.

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Treussart, F.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

Viciani, S.

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
[CrossRef] [PubMed]

Vincent, G.

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer- Verlag, Berlin, 1994), Chap. 7.
[CrossRef]

Wan, W.

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

Wittmann, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Wright, L. G.

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

Wu, E.

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

Xiang, G. -Y.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Xiao, M.

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

Xiao, Y. -F.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Xu, X. -Y.

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

Yamamato, Y.

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Yang, L.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Ye, C.

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

Yoon, J.

Yoon, J. W.

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[CrossRef]

Zavatta, A.

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
[CrossRef] [PubMed]

Zhang, J.

H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009).
[CrossRef]

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Zheng, W. -J.

Zhou, S.

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Zoller, P.

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
[CrossRef]

Europhys. Lett. (2)

P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

M. Stobińska, G. Alber, and G. Leuchs, “Perfect excitation of a matter qubit by a single photon in free space,” Europhys. Lett. 86, 14007 (2009).
[CrossRef]

IEEE Photon. J. (1)

A. Mock, “Low-power all-optical switch based on time-reversed microring laser,” IEEE Photon. J. 4, 2229–2235 (2012).
[CrossRef]

J. Phys. B: At. Mol. Opt. Phys. (1)

G. Bertocchi, O. Alibart, D. B. Ostrowsky, S. Tanzilli, and P. Baldi, “Single-photon Sagnac interferometer,” J. Phys. B: At. Mol. Opt. Phys. 39, 1011–1016 (2006).
[CrossRef]

Nat. Commun. (2)

O. Gazzano, S. M. de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, and P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013).
[CrossRef] [PubMed]

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamato, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5, 887–892 (2006).
[CrossRef] [PubMed]

Nat. Photon. (3)

J. Lavoie, J. M. Donohue, L. G. Wright, A. Fedrizzi, and K. J. Resch, “Spectral compression of single photons,” Nat. Photon. 7, 363–366 (2013).
[CrossRef]

J. -S. Tang, Y. -L. Li, X. -Y. Xu, G. -Y. Xiang, C. -F. Li, and G. -C. Guo, “Realization of quantum Wheelers delayed-choice experiment,” Nat. Photon. 6, 600–604 (2012).
[CrossRef]

J. Zhu, S. K. Ozdemir, Y. -F. Xiao, L. Li, L. He, D. -R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photon. 4, 46–49 (2010).
[CrossRef]

Nat. Phys. (1)

The Hong-Ou-Mandel effect in the context of metal dielectric structures is now studied—M. S. Tame, K. R. McEnery, S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9, 329–340 (2013).
[CrossRef]

Nature (London) (2)

L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature (London) 414, 413–418 (2001).
[CrossRef]

C. F. Gmachl, “Laser science: suckers for light,” Nature (London) 467, 37–39 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (1)

H. Chen and J. Zhang, “Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegener-ate optical parametric amplifier inside an optical cavity,” Phys. Rev. A 79, 063826 (2009).
[CrossRef]

Phys. Rev. B (1)

S. Feng and K. Halterman, “Coherent perfect absorption in epsilon-near-zero metamaterials,” Phys. Rev. B 86, 165103 (2012).
[CrossRef]

Phys. Rev. B. (1)

An early work [G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B. 8, 4768–4779 (1973), Sec. III.] presents general conditions under which all the out fields from a linear dielectric medium vanish. In particular, explicit conditions for spherical geometries were given.
[CrossRef]

Phys. Rev. Lett. (15)

For cylinderical geometries, see a recent work: H. Noh, Y. Chong, A. D. Stone, and H. Cao, “Perfect coupling of light to surface plasmons by coherent absorption,” Phys. Rev. Lett. 108, 186805 (2012).
[CrossRef] [PubMed]

Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, “Coherent perfect absorbers: time-reversed lasers,” Phys. Rev. Lett. 105, 053901 (2010).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. F. Roch, “Delayed-choice test of quantum complementarity with interfering single photons,” Phys. Rev. Lett. 100, 220402 (2008).
[CrossRef] [PubMed]

J. E. Kennard, J. P. Hadden, L. Marseglia, I. Aharonovich, S. Castelletto, B. R. Patton, A. Politi, J. C. F. Matthews, A. G. Sinclair, B. C. Gibson, S. Prawer, J. G. Rarity, and J. L. O’Brien, “On-chip manipulation of single photons from a diamond defect,” Phys. Rev. Lett. 111, 213603 (2013).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89, 067901 (2002).
[CrossRef] [PubMed]

P. Ghenuche, G. Vincent, M. Laroche, N. Bardou, R. Haïdar, J. -L. Pelouard, and S. Collin, “Optical extinction in a single layer of nanorods,” Phys. Rev. Lett. 109, 143903 (2012).
[CrossRef] [PubMed]

J. W. Yoon, G. M. Koh, S. H. Song, and R. Magnusson, “Measurement and modeling of a complete optical absorption and scattering by coherent surface plasmon-polariton excitation using a silver thin-film grating,” Phys. Rev. Lett. 109, 257402 (2012).
[CrossRef]

C. W. Gardiner, “Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing,” Phys. Rev. Lett. 56, 1917–1920 (1986).
[CrossRef] [PubMed]

U. L. Andersen and T. C. Ralph, “High-fidelity teleportation of continuous-variable quantum states using delocalized single photons,” Phys. Rev. Lett. 111, 050504 (2013).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
[CrossRef] [PubMed]

G. S. Agarwal, “Interferences in parametric interactions driven by quantized fields,” Phys. Rev. Lett. 97, 023601 (2006).
[CrossRef] [PubMed]

J. Zhang, C. Ye, F. Gao, and M. Xiao, “Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity,” Phys. Rev. Lett. 101, 233602 (2008).
[CrossRef] [PubMed]

D. Pinotsi and A. Imamoglu, “Single photon absorption by a single quantum emitter,” Phys. Rev. Lett. 100, 093603 (2008).
[CrossRef] [PubMed]

S. Zhang, C. Liu, S. Zhou, C. S. Chuu, M. M. T. Loy, and S. Du, “Coherent control of single-photon absorption and reemission in a two-level atomic ensemble,” Phys. Rev. Lett. 109, 263601 (2012).
[CrossRef]

Physics (1)

S. Longhi, “Backward lasing yields a perfect absorber,” Physics 3, 61 (2010).
[CrossRef]

Physics Today (1)

A. D. Stone, “Gobbling up light with an antilaser,” Physics Today 64(11), 68–69 (2011).
[CrossRef]

Plasmonics (1)

M. Pu, Q. Feng, C. Hu, and X. Luo, “Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film,” Plasmonics 7, 733–738 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear optics,” Rev. Mod. Phys. 83, 33–80 (2011).
[CrossRef]

Science (5)

W. Wan, Y. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, “Time-reversed lasing and interferometric control of absorption,” Science 331, 889–892 (2011).
[CrossRef] [PubMed]

V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect, and J. Roch, “Experimental realization of Wheelers delayed-choice Gedanken experiment,” Science 315, 966–968 (2007).
[CrossRef] [PubMed]

A. Peruzzo, P. Shadbolt, N. Brunner, S. Popescu, and J. L. O’Brien, “A quantum delayed-choice experiment,” Science 338, 634–637 (2012).
[CrossRef] [PubMed]

F. Kaiser, T. Coudreau, P. Milman, D. B. Ostrowsky, and S. Tanzilli, “Entanglement-enabled delayed-choice experiment,” Science 338, 637–640 (2012).
[CrossRef] [PubMed]

A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photonadded coherent states of light,” Science 306, 660–662 (2004).
[CrossRef] [PubMed]

Other (5)

P. A. M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, London1958), Page 7.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer- Verlag, Berlin, 1994), Chap. 7.
[CrossRef]

See Ref. [47], p. 124, Eq. (7.18).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, UK, 1997).
[CrossRef]

G. S. Agarwal, Quantum Optics (Cambridge University Press, New York, 2012), Chap. 5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

A Fabry-Perot interferometer. It is filled with an absorptive medium with complex refractive index n1(ω). The refractive index outside the cavity is n0(ω). The ain(ω) and bin(ω) are the incident counterpropagating quantum fields, and aout (ω) and bout (ω) are the output fields.

Fig. 2
Fig. 2

A schematic for realizing the coherent perfect absorption of single photons in a Fabry-Perot interferometer. A quantum field ĉ(ω) mixes with a vacuum field |0〉 at a 50:50 beam splitter (BS). The output fields from the beam splitter respectively travel distances l1 and l2 to the double end mirrors of the Fabry-Perot cavity with a medium whose refractive index is n1(ω).

Fig. 3
Fig. 3

The normalized power spectra Saout (λ)/Nc(λ) (Sbout (λ)/Nc(λ)) of the output fields as a function of wavelength λ, for the length of the cavity l = 115.79 μm, the refractive index of the silicon medium is n1 = 3.6 + 0.0008i [11].

Fig. 4
Fig. 4

The coherent perfect absorption of path entangled photons in a micro-ring resonator coupled to two waveguides.

Fig. 5
Fig. 5

The coherent perfect absorption of path entangled photons in a micro-ring resonator coupled to two waveguides.

Fig. 6
Fig. 6

The normalized spectrum : S out x ( ω ) : × Γ 2 + ω 2 Γ 2 of the quadratures of the output fields as a function of the normalized frequency ω/κ for different values of squeezing parameters rs = 0.5 (dotted), 1 (dashed), 3 (solid). Parameter: φ = 0.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

a out ( ω ) = r L ( ω ) a in ( ω ) + t R ( ω ) b in ( ω ) , b out ( ω ) = r R ( ω ) b in ( ω ) + t L ( ω ) a in ( ω ) ,
a in ( ω ) = b in ( ω ) , r L ( ω ) + t R ( ω ) = 0 ,
a out ( ω ) = b out ( ω ) = 0 .
[ a ^ in ( ω ) , a ^ in ( Ω ) ] = 2 π δ ( ω + Ω ) , [ b ^ in ( ω ) , b ^ in ( Ω ) ] = 2 π δ ( ω + Ω ) , [ a ^ in ( ω ) , b ^ in ( Ω ) ] = 0 .
a ^ out ( ω ) = r L ( ω ) a ^ in ( ω ) + t R ( ω ) b ^ in ( ω ) + f ^ a ( ω ) , b ^ out ( ω ) = r R ( ω ) b ^ in ( ω ) + t L ( ω ) a ^ in ( ω ) + f ^ b ( ω ) ,
[ f ^ a ( ω ) , f ^ a ( Ω ) ] = 2 π { 1 [ | r L ( ω ) | 2 + | t R ( ω ) | 2 ] } δ ( ω + Ω ) , [ f ^ b ( ω ) , f ^ b ( Ω ) ] = 2 π { 1 [ | r R ( ω ) | 2 + | t L ( ω ) | 2 ] } δ ( ω + Ω ) .
[ f ^ a ( ω ) , f ^ b ( Ω ) ] = 2 π δ ( ω + Ω ) Γ a b ( ω ) , r L ( ω ) t L * ( ω ) + t R ( ω ) r R * ( ω ) + Γ a b ( ω ) = 0 .
a in ( Ω ) a ^ in ( ω ) = 2 π N a ( ω ) δ ( ω + Ω ) , b in ( Ω ) b ^ in ( ω ) = 2 π N b ( ω ) δ ( ω + Ω ) ,
a out ( Ω ) a ^ out ( ω ) = 2 π S aout ( ω ) δ ( ω + Ω ) , b ^ out ( Ω ) b ^ out ( ω ) = 2 π S bout ( ω ) δ ( ω + Ω ) .
S aout ( ω ) = | r L ( ω ) | 2 N a ( ω ) + | t R ( ω ) | 2 N b ( ω ) 0 , S bout ( ω ) = | r R ( ω ) | 2 N b ( ω ) + | t L ( ω ) | 2 N a ( ω ) 0 .
( a ^ in ( ω ) b ^ in ( ω ) ) = ( e i k l 1 0 0 e i k l 2 ) 1 2 ( 1 i i 1 ) ( c ^ ( ω ) d ^ ( ω ) ) ,
c ^ ( Ω ) c ^ ( ω ) = 2 π N c ( ω ) δ ( ω + Ω ) , d ^ ( Ω ) d ^ ( ω ) = 0 ,
a ^ in ( ω ) = 1 2 [ c ^ ( ω ) + i d ^ ( ω ) ] e i k l 1 , b ^ in ( ω ) = 1 2 [ i c ^ ( ω ) + d ^ ( ω ) ] e i k l 2 ,
a ^ i ( Ω ) a ^ j ( ω ) = 2 π N c ( ω ) 2 δ ( ω + Ω ) ,
S aout ( ω ) = N c ( ω ) 2 | r L ( ω ) + t R ( ω ) | 2 , S bout ( ω ) = N c ( ω ) 2 | r R ( ω ) + t L ( ω ) | 2 .
r L ( ω ) + t R ( ω ) = 0 ,
S aout ( ω ) = S bout ( ω ) = 0 .
a ^ ˙ = ( i ω c + κ i + 2 κ ) a ^ + 2 κ a ^ in + 2 κ b ^ in + 2 κ i f ^ ,
f ^ ( t ) f ^ ( t ) = δ ( t t ) .
a ^ ( ω ) = 2 κ [ a ^ in ( ω ) + b ^ in ( ω ) ] + 2 κ i f ^ ( ω ) 2 κ + κ i + i ( ω c ω ) .
a ^ out ( ω ) = 2 κ a ^ ( ω ) + a ^ in ( ω ) , b ^ out ( ω ) = 2 κ a ^ ( ω ) + b ^ in ( ω ) .
S aout ( ω ) = S bout ( ω ) = N c ( ω ) 2 ( κ i 2 κ ) 2 + ( ω ω c ) 2 ( κ i + 2 κ ) 2 + ( ω ω c ) 2 .
S aout ( ω c ) = S bout ( ω c ) = N c ( ω c ) 2 ( κ i 2 κ ) 2 ( κ i + 2 κ ) 2 .
a ˜ ^ in ( ω ) b ˜ ^ in ( Ω ) = b ˜ ^ in ( ω ) a ˜ ^ in ( Ω ) = 2 π M Γ 2 Γ 2 + ω 2 δ ( ω + Ω ) e i φ , a ˜ ^ in ( ω ) a ˜ ^ in ( Ω ) = b ˜ ^ in ( ω ) b ˜ ^ in ( Ω ) = 2 π ( N Γ 2 Γ 2 + ω 2 + 1 ) δ ( ω + Ω ) ,
x ˜ ^ u out ( ω ) x ˜ ^ u out ( Ω ) = 2 π S u out x ( ω ) δ ( ω + Ω ) ,
a ˜ ^ ( ω ) = 2 κ [ a ˜ ^ in ( ω ) + b ˜ ^ in ( ω ) ] + 2 κ i f ˜ ^ ( ω ) κ i + 2 κ i ω ,
a ˜ ^ out ( ω ) = 2 κ b ˜ ^ in ( ω ) + ( κ i i ω ) a ˜ ^ in ( ω ) 2 κ κ i f ˜ ^ ( ω ) κ i + 2 κ i ω , b ˜ ^ out ( ω ) = 2 κ a ˜ ^ in ( ω ) + ( κ i i ω ) b ˜ ^ in ( ω ) 2 κ κ i f ˜ ^ ( ω ) κ i + 2 κ i ω .
S aout ( ω ) = S bout ( ω ) = 8 κ 2 + ω 2 16 κ 2 + ω 2 N Γ 2 Γ 2 + ω 2 ,
: S aout x ( ω ) : = : S bout x ( ω ) : = : S out x ( ω ) : = 8 κ 2 M cos φ + ( 8 κ 2 + ω 2 ) N 16 κ 2 + ω 2 Γ 2 Γ 2 + ω 2 .
: S out x ( 0 ) : = 0.5 ( N M ) = 0.5 ( N N ( N + 1 ) ) 0.5 [ N N ( 1 + 1 2 N ) ] = 0.25 .

Metrics