Abstract

Electro-optic switching of refraction is experimentally demonstrated in a phase-discontinuity complementary metasurface twisted nematic cell. The phase-discontinuity complementary metasurface is fabricated by focused-ion-beam milling, and a twisted nematic cell is constructed with complementary V-shape slot antenna metasurface. By application of an external voltage, switching is achieved between ordinary refraction and extraordinary refraction satisfying the generalized Snell’s law. It has a strong implication for applications in spatial light modulation and wavelength division multiplexer/demultiplexer in a near-IR spectral range.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetrical polarization-dependent scattering and reflection in a sole cell of polymer network-90° twisted nematic liquid crystals

Cheng-Kai Liu, Wei-Hsuan Chen, and Ko-Ting Cheng
Opt. Express 25(19) 22388-22403 (2017)

All-optical switching in a nematic liquid crystal twist cell

Jessica Merlin, Elysa Chao, Mark Winkler, Kenneth D. Singer, Platon Korneychuk, and Yuri Reznikov
Opt. Express 13(13) 5024-5029 (2005)

Reflection resonance switching in metamaterial twisted nematics cell

Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu
Opt. Express 21(15) 17492-17497 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  2. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
    [Crossref]
  3. A. G. Smart, “Phase-shifting surfaces bend the rules of ray optics,” Phys. Today 64, 12 (2011).
    [Crossref]
  4. N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
    [Crossref]
  5. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
    [Crossref] [PubMed]
  6. B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express 18, 16492–16498 (2010).
    [Crossref] [PubMed]
  7. O. Buchnev, J. Ou, M. Kaczmarek, N. Zheludev, and V. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21, 1633–1638 (2013).
    [Crossref] [PubMed]
  8. M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Electro-optical switching by liquid-crystal controlled metasurfaces,” Opt. Express 21, 8879–8885 (2013).
    [Crossref] [PubMed]
  9. J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
    [Crossref]
  10. H. G. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” J. Inst. Electr. Eng. Part IIIA: Radiolocation 93, 620–626 (1946).
  11. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
    [Crossref] [PubMed]
  12. Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu, “Reflection resonance switching in metamaterial twisted nematics cell,” Opt. Express 21, 17492–17497 (2013).
    [Crossref] [PubMed]
  13. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
    [Crossref]
  14. S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
    [Crossref] [PubMed]
  15. See http://www.lumerical.com/
  16. D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
    [Crossref]
  17. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010), Vol. 67.

2013 (8)

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

O. Buchnev, J. Ou, M. Kaczmarek, N. Zheludev, and V. Fedotov, “Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell,” Opt. Express 21, 1633–1638 (2013).
[Crossref] [PubMed]

M. Decker, C. Kremers, A. Minovich, I. Staude, A. E. Miroshnichenko, D. Chigrin, D. N. Neshev, C. Jagadish, and Y. S. Kivshar, “Electro-optical switching by liquid-crystal controlled metasurfaces,” Opt. Express 21, 8879–8885 (2013).
[Crossref] [PubMed]

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu, “Reflection resonance switching in metamaterial twisted nematics cell,” Opt. Express 21, 17492–17497 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

2012 (3)

S. Larouche and D. R. Smith, “Reconciliation of generalized refraction with diffraction theory,” Opt. Lett. 37, 2391–2393 (2012).
[Crossref] [PubMed]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

2011 (2)

A. G. Smart, “Phase-shifting surfaces bend the rules of ray optics,” Phys. Today 64, 12 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

1946 (1)

H. G. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” J. Inst. Electr. Eng. Part IIIA: Radiolocation 93, 620–626 (1946).

Aieta, F.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Aoust, G.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Blanchard, R.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Booker, H. G.

H. G. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” J. Inst. Electr. Eng. Part IIIA: Radiolocation 93, 620–626 (1946).

Buchnev, O.

Capasso, F.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chigrin, D.

Choi, E.

Choi, E. Y.

Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu, “Reflection resonance switching in metamaterial twisted nematics cell,” Opt. Express 21, 17492–17497 (2013).
[Crossref] [PubMed]

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

Decker, M.

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Fedotov, V.

Feng, S.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010), Vol. 67.

Gwon, M.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

Hu, D.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Hwang, T.-J.

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

Jagadish, C.

Kaczmarek, M.

Kan, Q.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Kang, B.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express 18, 16492–16498 (2010).
[Crossref] [PubMed]

Kats, M.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

Kats, M. A.

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Kim, D. H.

Kim, D.-W.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

Kim, E. S.

Kim, J.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

B. Kang, J. H. Woo, E. Choi, H.-H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express 18, 16492–16498 (2010).
[Crossref] [PubMed]

Kivshar, Y. S.

Klar, P. J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Kremers, C.

Larouche, S.

Lee, H.-H.

Lee, Y. U.

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

Y. U. Lee, E. Y. Choi, J. H. Woo, E. S. Kim, and J. W. Wu, “Reflection resonance switching in metamaterial twisted nematics cell,” Opt. Express 21, 17492–17497 (2013).
[Crossref] [PubMed]

Minovich, A.

Miroshnichenko, A. E.

Neshev, D. N.

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Ou, J.

Park, Y.-S.

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

Smart, A. G.

A. G. Smart, “Phase-shifting surfaces bend the rules of ray optics,” Phys. Today 64, 12 (2011).
[Crossref]

Smith, D. R.

Staude, I.

Sun, W.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Tetienne, J.-P.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Wang, X.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Woo, J. H.

Wu, J. W.

Ye, J.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010), Vol. 67.

Yu, N.

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zhang, Y.

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

Zheludev, N.

Adv. Opt. Mater. (1)

D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, and Y. Zhang, “Ultrathin terahertz planar elements,” Adv. Opt. Mater. 1, 186–191 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

N. Yu, P. Genevet, F. Aieta, M. Kats, R. Blanchard, G. Aoust, J.-P. Tetienne, Z. Gaburro, and F. Capasso, “Flat optics: Controlling wavefronts with optical antenna metasurfaces,” IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).
[Crossref]

J. Inst. Electr. Eng. Part IIIA: Radiolocation (1)

H. G. Booker, “Slot aerials and their relation to complementary wire aerials (Babinet’s principle),” J. Inst. Electr. Eng. Part IIIA: Radiolocation 93, 620–626 (1946).

Light-Sci. Appl. (1)

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, babinet-inverted plasmonic metalenses,” Light-Sci. Appl. 2, e72 (2013).
[Crossref]

Nano Lett. (1)

F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, “Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities,” Nano Lett. 12, 1702–1706 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

J. Kim, Y. U. Lee, B. Kang, J. H. Woo, E. Y. Choi, E. S. Kim, M. Gwon, D.-W. Kim, and J. W. Wu, “Fabrication of polarization-dependent reflective metamaterial by focused ion beam milling,” Nanotechnology 24, 015306 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Today (1)

A. G. Smart, “Phase-shifting surfaces bend the rules of ray optics,” Phys. Today 64, 12 (2011).
[Crossref]

Science (3)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
[Crossref]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339, 1232009 (2013).
[Crossref] [PubMed]

Other (2)

See http://www.lumerical.com/

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley, 2010), Vol. 67.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) SEM image of cVMS fabricated by focused ion beam milling. (b) A row of cVMS is shown with the superlattice periodicity of Γ = 2400nm. Schematics of ordinary/extraordinary reflection and refraction with the reflection angle θr and refraction angle θt are shown in (c) the normal incidence and (d) an incidence angle θi for s-polarized incident beam. In both (c) and (d), θr = θt. See text.
Fig. 2
Fig. 2 2-dimensional plot of (a) normalized amplitude and (b) phase of scattered light in cross-polarization is shown as a function of wavelength and x-position. For a series of wavelengths, (c) normalized amplitude and (d) phase of scattered light in cross-polarization are plotted for each V-shape slot antenna from number 1 to number 8.
Fig. 3
Fig. 3 Plane-wave beam propagation is simulated for a normally incident y-polarized light. (a) y-component of electric field is shown corresponding to ordinary refraction, and (b) x-component of electric field is shown corresponding to extraordinary refraction with λ = 1100nm. (c) and (d) are simulation calculation results for λ = 1309nm.
Fig. 4
Fig. 4 Experimental measurements of extraordinary refraction and reflection angles versus wavelength are shown. (a) Refraction is shown for the normal incidence in s-polarization. (b) Refraction is shown for the incidence angle 15° in p-polarization. (c) Refraction is shown for the incidence angle 60° in p-polarization. (d) Reflection is shown for the incidence angle 60° in p-polarization. The white lines are from a theoretical calculation.
Fig. 5
Fig. 5 Deflection efficiencies are plotted as a function of wavelength for (a) reflection and (b) transmission.
Fig. 6
Fig. 6 (a) Schematics of beam deflection is shown for y-polarized incident light at λ = 1100nm. (b)&(c) and (d)&(e) correspond to the polar plots of the transmitted light intensities in negative metasurface cVMS and positive metasurface, respectively.
Fig. 7
Fig. 7 Schematics of a cVMS-TNLC cell is shown with a y-polarized incident light, when (a) no external voltage is applied and (b) an ac voltage is applied. Linear polarization states are orthogonal for ordinary and extraordinary refractions.
Fig. 8
Fig. 8 (a) Photograph of experimental set-up is shown along with (b) schematics.
Fig. 9
Fig. 9 (A) Schematics of a cVMS-TNLC cell is shown with an incident light with polarization angle ϕent. (B) Measurements and (C) theoretical calculations of polarization direction of extraordinary refraction light with ac voltage of (a) 0V, (b) 2.5V, (c) 3.5V, and (d) 4.5V for ϕent=90° are shown.
Fig. 10
Fig. 10 (A) Measurements and (B) theoretical calculations of polarization direction of refraction light for the incident polarization angles (a) ϕent=0°, (b) ϕent=30°, (c) ϕent=45°, and (d) ϕent=60° (e) ϕent=90° are shown.
Fig. 11
Fig. 11 Schematics of an electro-optic switching of refraction is shown with a y-polarized incident light, when (a) no external voltage is applied and (b) an ac voltage is applied.
Fig. 12
Fig. 12 Measurement of an electro-optic switching of refraction is shown in a y-polarized incident light. The light intensity is plotted as a function of an ac voltage.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M TNLC = ( cos Ψ sin Ψ sin Ψ cos Ψ ) ( cos X i Δ 2 sin X X Ψ sin X X Ψ sin X X cos X + i Δ 2 sin X X )
X = Ψ 2 + ( Δ 2 ) 2
( V x V y ) = ( cos ϕ ent sin ϕ ent ) , ( V x V y ) = ( cos ϕ exit sin ϕ exit ) .
T = | V * M cVMS M TNLC V | 2
M cVMS = ( cos 2 β sin 2 β sin 2 β cos 2 β ) .

Metrics