Abstract

We demonstrate the first SDN-controlled optical topology-reconfigurable mobile fronthaul (MFH) architecture for bidirectional coordinated multipoint (CoMP) and low latency inter-cell device-to-device (D2D) connectivity in the 5G mobile networking era. SDN-based OpenFlow control is used to dynamically instantiate the CoMP and inter-cell D2D features as match/action combinations in control plane flow tables of software-defined optical and electrical switching elements. Dynamic re-configurability is thereby introduced into the optical MFH topology, while maintaining back-compatibility with legacy fiber deployments. 10Gb/s peak rates with <7μs back-to-back transmission latency and 29.6dB total power budget are experimentally demonstrated, confirming the attractiveness of the new approach for optical MFH of future 5G mobile systems.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of fronthaul flexibility for enhanced CoMP service in 5G radio and optical access networks

Jiawei Zhang, Yuefeng Ji, Hao Yu, Xingang Huang, and Han Li
Opt. Express 25(18) 21247-21258 (2017)

P4 Edge Node Enabling Stateful Traffic Engineering and Cyber Security

F. Paolucci, F. Civerchia, A. Sgambelluri, A. Giorgetti, F. Cugini, and P. Castoldi
J. Opt. Commun. Netw. 11(1) A84-A95 (2019)

Bidirectional Fiber-Wireless Access Technology for 5G Mobile Spectral Aggregation and Cell Densification

Mu Xu, Jhih-Heng Yan, Junwen Zhang, Feng Lu, Jing Wang, Lin Cheng, Daniel Guidotti, and Gee-Kung Chang
J. Opt. Commun. Netw. 8(12) B104-B110 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
    [Crossref]
  2. Y. Okumura and J. Terada, “Optical network technologies and architectures for backhaul/fronthaul of future radio access supporting big mobile data,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper Tu3F.1.
    [Crossref]
  3. P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O'Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proc. 2013 Future Network and Mobile Summit, July (2013).
  4. K. Nishimura, A. Agata, and S. Nanba, “Optical access technologies for rapidly expanding mobile data traffic accommodation,” in Proc. 2013 OptoElectronics and Communications Conference (OECC), Kyoto, Japan, July (2013), paper WP4-3.
  5. L. Cheng, C. Liu, M. Zhu, J. Wang, and G. K. Chang, “Optical CoMP transmission in millimeter-wave small cells for mobile fronthaul,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper W2A.43.
    [Crossref]
  6. China Mobile Research Institute, “C-RAN the road toward green RAN,” White Paper v2.5, available at http://labs.chinamobile.com/cran/wp-content/uploads/CRAN_white_paper_v2_5_EN.pdf .
  7. N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined -flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Proc. 2013 IEEE/OSA Optical Fiber Conference (OFC), Los Angeles, CA, Mar. (2013), paper PDP5B.2.
    [Crossref]
  8. F. Khan, LTE for 4G Mobile Broadband: Interface, Technologies and Performance (Cambridge University, 2009).
  9. NEC ProgrammableFlow PF5240 Switch, http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch .
  10. S. Han, T. J. Seok, N. Quack, B. Yoo, and M. C. Wu, “Monolithic 50×50 silicon photonics switches with microsecond response time,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper M2K.2.

2014 (1)

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

Arefi, R.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

Bangerter, B.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

Stewart, K.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

Talwar, S.

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

IEEE Commun. Mag. (1)

B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and devices for the 5G era,” IEEE Commun. Mag. 52(2), 90–96 (2014).
[Crossref]

Other (9)

Y. Okumura and J. Terada, “Optical network technologies and architectures for backhaul/fronthaul of future radio access supporting big mobile data,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper Tu3F.1.
[Crossref]

P. Chanclou, A. Pizzinat, F. Le Clech, T.-L. Reedeker, Y. Lagadec, F. Saliou, B. Le Guyader, L. Guillo, Q. Deniel, S. Gosselin, S. D. Le, T. Diallo, R. Brenot, F. Lelarge, L. Marazzi, P. Parolari, M. Martinelli, S. O'Dull, S. A. Gebrewold, D. Hillerkuss, J. Leuthold, G. Gavioli, and P. Galli, “Optical fiber solution for mobile fronthaul to achieve cloud radio access network,” in Proc. 2013 Future Network and Mobile Summit, July (2013).

K. Nishimura, A. Agata, and S. Nanba, “Optical access technologies for rapidly expanding mobile data traffic accommodation,” in Proc. 2013 OptoElectronics and Communications Conference (OECC), Kyoto, Japan, July (2013), paper WP4-3.

L. Cheng, C. Liu, M. Zhu, J. Wang, and G. K. Chang, “Optical CoMP transmission in millimeter-wave small cells for mobile fronthaul,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper W2A.43.
[Crossref]

China Mobile Research Institute, “C-RAN the road toward green RAN,” White Paper v2.5, available at http://labs.chinamobile.com/cran/wp-content/uploads/CRAN_white_paper_v2_5_EN.pdf .

N. Cvijetic, A. Tanaka, P. N. Ji, S. Murakami, K. Sethuraman, and T. Wang, “First OpenFlow-based software-defined -flow architecture for flex-grid OFDMA mobile backhaul over passive optical networks with filterless direct detection ONUs,” in Proc. 2013 IEEE/OSA Optical Fiber Conference (OFC), Los Angeles, CA, Mar. (2013), paper PDP5B.2.
[Crossref]

F. Khan, LTE for 4G Mobile Broadband: Interface, Technologies and Performance (Cambridge University, 2009).

NEC ProgrammableFlow PF5240 Switch, http://www.necam.com/sdn/doc.cfm?t=PFlowPF5240Switch .

S. Han, T. J. Seok, N. Quack, B. Yoo, and M. C. Wu, “Monolithic 50×50 silicon photonics switches with microsecond response time,” in Proc. 2014 IEEE/OSA Optical Fiber Conference (OFC), San Francisco, CA, Mar. (2014), paper M2K.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical MFH scenarios with and without topology reconfigurability: (a, left) DL CoMP; (b, center) UL CoMP; (c,right) Inter-cell D2D; MT = mobile terminal.
Fig. 2
Fig. 2 Proposed SDN-controlled topology-reconfigurable optical MFH architecture for bidirectional (DL/UL) CoMP and low latency inter-cell D2D. Tx = transmitter; Rx = receiver.
Fig. 3
Fig. 3 Any-to-any optical switch architecture for optical multicast and loopback functions. OC = optical coupler; WSS = wavelength selective switch.
Fig. 4
Fig. 4 Experimental setup of 5G SDN-controlled topology-reconfigurable optical MFH architecture; optical spectrum at (ii): 0.1nm resolution.
Fig. 5
Fig. 5 (a, left) DL/UL CoMP latency; (b, center) DL BER; (c, right) Inter-cell D2D latency.

Metrics