Abstract

This work presents, for the first time, the results of studies of stimulated Raman scattering (SRS) in 1.2-km P2O5-doped silica fiber of radiation of single- and double-scale picosecond pulses generated in a fiber master oscillator and amplified in a one-stage fiber amplifier. Shown are differences in supercontinuum spectra composed of several Stokes components when pumped with pulses of different structure. More efficient Raman transformation of double-scale pulses was identified, leading to broader supercontinuum spectra.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser

Sergey V. Smirnov, Sergey M. Kobtsev, and Sergey V. Kukarin
Opt. Express 22(1) 1058-1064 (2014)

Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers

Sergey Kobtsev, Sergey Kukarin, Sergey Smirnov, Sergey Turitsyn, and Anton Latkin
Opt. Express 17(23) 20707-20713 (2009)

High average power mode-locked figure-eight Yb fibre master oscillator

Y. S. Fedotov, A.V. Ivanenko, S. M. Kobtsev, and S. V. Smirnov
Opt. Express 22(25) 31379-31386 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Fermann, Nonlinear polarization evolution in passively modelocked fiber lasers (Compact Sources of Ultrashort Pulses, I. N. Duling (Ed.), Cambridge University, 1995), Chap. 5.
  2. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  3. J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
    [Crossref] [PubMed]
  4. S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
    [Crossref] [PubMed]
  5. B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  6. S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, Mode-locked fibre lasers with high-energy pulses (Laser Systems for Applications, K.Jakubczak (Ed.), InTech, 2011), Chap. 3.
  7. D. Mao, X. Liu, L. Wang, H. Lu, and L. Duan, “Coexistence of unequal pulses in a normal dispersion fiber laser,” Opt. Express 19(17), 16303–16308 (2011).
    [Crossref] [PubMed]
  8. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  9. W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
    [Crossref] [PubMed]
  10. S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
    [Crossref] [PubMed]
  11. W. H. Renninger and F. W. Wise, Dissipative Soliton Fiber Lasers (Fiber lasers, O. G. Okhotnikov (Ed.), Wiley-VCH Verlag GmbH & Co. KgaA, 2012), Chap. 4.
  12. S. Wabnitz, “Optical turbulence in fiber lasers,” Opt. Lett. 39(6), 1362–1365 (2014).
    [Crossref] [PubMed]
  13. M. Horowitz, Y. Barad, and Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997).
    [Crossref] [PubMed]
  14. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernández-García, “Adjustable noiselike pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011).
    [Crossref]
  15. J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
    [Crossref] [PubMed]
  16. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
    [Crossref] [PubMed]
  17. B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
    [Crossref]
  18. S. M. Kobtsev and S. V. Smirnov, “Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length,” Laser Phys. 21(2), 272–276 (2011).
    [Crossref]
  19. I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, and S. K. Turitsyn, “Numerical modeling of fiber lasers with long and ultra-long ring cavity,” Opt. Express 21(10), 12942–12950 (2013).
    [Crossref] [PubMed]
  20. S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014).
    [Crossref] [PubMed]
  21. C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13(10), 2170–2177 (1996).
    [Crossref]
  22. S. M. Kobtsev and S. V. Kukarin, “All-fiber Raman supercontinuum generator,” Laser Phys. 20(2), 372–374 (2010).
    [Crossref]
  23. H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, “Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode,” Opt. Express 19(27), 25918–25924 (2011).
    [Crossref] [PubMed]
  24. H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
    [Crossref]
  25. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
    [Crossref] [PubMed]
  26. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11(10), 662–664 (1986).
    [Crossref] [PubMed]
  27. S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005).
    [Crossref] [PubMed]
  28. A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010).
    [Crossref] [PubMed]
  29. X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
    [Crossref]
  30. K. Yin, B. Zhang, W. Yang, H. Chen, and J. Hou, “Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber,” Opt. Express 21(13), 15987–15997 (2013).
    [Crossref] [PubMed]
  31. A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
    [Crossref] [PubMed]
  32. Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
    [Crossref]
  33. M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
    [Crossref] [PubMed]

2014 (5)

2013 (5)

2012 (4)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
[Crossref] [PubMed]

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

2011 (5)

2010 (3)

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

S. M. Kobtsev and S. V. Kukarin, “All-fiber Raman supercontinuum generator,” Laser Phys. 20(2), 372–374 (2010).
[Crossref]

A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010).
[Crossref] [PubMed]

2009 (2)

2007 (1)

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

2005 (1)

1997 (1)

1996 (1)

1986 (1)

Aalto, A.

Agrawal, G. P.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

C. Headley and G. P. Agrawal, “Unified description of ultrafast stimulated Raman scattering in optical fibers,” J. Opt. Soc. Am. B 13(10), 2170–2177 (1996).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

Barad, Y.

Chen, H.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Chouli, S.

Chung, C. C.

Dantus, M.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Devine, N.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

Duan, L.

Duan, L. N.

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

Duan, Z.

Fedoruk, M. P.

Gao, W.

Genty, G.

Gordon, J. P.

Grajales-Coutiño, R.

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[Crossref] [PubMed]

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

Hausmann, K.

Headley, C.

Hernández-García, J. C.

Horowitz, M.

Hou, J.

Ibarra-Escamilla, B.

Ilday, Ö.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ivanenko, A.

Khripunov, S.

Kobtsev, S.

Kobtsev, S. M.

Kracht, D.

Kukarin, S.

Kukarin, S. V.

Kuzin, E. A.

Latkin, A.

Li, J.

Liao, M.

Lin, C. H.

Liu, X.

Liu, X. M.

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

Liu, Y.

Lozovoy, V. V.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Lu, H.

Luo, H.

Mafi, A.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Mao, D.

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

D. Mao, X. Liu, L. Wang, H. Lu, and L. Duan, “Coexistence of unequal pulses in a normal dispersion fiber laser,” Opt. Express 19(17), 16303–16308 (2011).
[Crossref] [PubMed]

Morgner, U.

Mou, C.

Neumann, J.

Nie, B.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Ohishi, Y.

Oktem, B.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Pan, C. L.

Parker, G.

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Pottiez, O.

Pourbeyram, H.

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

Qin, G.

Qiu, Y.

Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
[Crossref]

Radnatarov, D.

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Sayinc, H.

Shtyrina, O. V.

Silberberg, Y.

Smirnov, S.

Smirnov, S. V.

Soto-Crespo, J. M.

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

Sun, Z.

Suzuki, T.

Toivonen, J.

Tsia, K. K.

Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
[Crossref]

Turitsyn, S.

Turitsyn, S. K.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Wabnitz, S.

Wang, C. L.

Wang, L.

Wang, L. R.

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

Wise, F. W.

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

Wong, K. Y.

Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
[Crossref]

Xu, Y. Q.

Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
[Crossref]

Yan, X.

Yan, Z.

Yang, W.

Yarutkina, I. A.

Yin, K.

You, Y. J.

Zaytsev, A.

Zhang, B.

Zhang, L.

Zhang, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Pourbeyram, G. P. Agrawal, and A. Mafi, “Stimulated Raman scattering cascade spanning the wavelength range of 523 to 1750 nm using a graded-index multimode optical fiber,” Appl. Phys. Lett. 102(20), 201107 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18(1), 389–398 (2012).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Laser Phys. (3)

S. M. Kobtsev and S. V. Kukarin, “All-fiber Raman supercontinuum generator,” Laser Phys. 20(2), 372–374 (2010).
[Crossref]

X. M. Liu, L. R. Wang, D. Mao, and L. N. Duan, “Supercontinuum generation in standard single-mode fiber pumped by a nanosecond-pulse laser,” Laser Phys. 22(1), 227–231 (2012).
[Crossref]

S. M. Kobtsev and S. V. Smirnov, “Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length,” Laser Phys. 21(2), 272–276 (2011).
[Crossref]

Nat. Photonics (2)

B. Oktem, C. Ülgüdür, and Ö. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Commun. (1)

Y. Qiu, Y. Q. Xu, K. Y. Wong, and K. K. Tsia, “Enhanced supercontinuum generation in the normal dispersion pumping regime by seeded dispersive wave emission and stimulated Raman scattering,” Opt. Commun. 325, 28–34 (2014).
[Crossref]

Opt. Eng. (1)

B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, “Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses,” Opt. Eng. 53(5), 051505 (2014).
[Crossref]

Opt. Express (14)

M. Liao, X. Yan, W. Gao, Z. Duan, G. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express 19(16), 15389–15396 (2011).
[Crossref] [PubMed]

K. Yin, B. Zhang, W. Yang, H. Chen, and J. Hou, “Over an octave cascaded Raman scattering in short highly germanium-doped silica fiber,” Opt. Express 21(13), 15987–15997 (2013).
[Crossref] [PubMed]

A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, and C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013).
[Crossref] [PubMed]

S. M. Kobtsev and S. V. Smirnov, “Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump,” Opt. Express 13(18), 6912–6918 (2005).
[Crossref] [PubMed]

A. Aalto, G. Genty, and J. Toivonen, “Extreme-value statistics in supercontinuum generation by cascaded stimulated Raman scattering,” Opt. Express 18(2), 1234–1239 (2010).
[Crossref] [PubMed]

H. Sayinc, K. Hausmann, U. Morgner, J. Neumann, and D. Kracht, “Picosecond all-fiber cascaded Raman shifter pumped by an amplified gain switched laser diode,” Opt. Express 19(27), 25918–25924 (2011).
[Crossref] [PubMed]

D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21(18), 20626–20631 (2013).
[Crossref] [PubMed]

D. Mao, X. Liu, L. Wang, H. Lu, and L. Duan, “Coexistence of unequal pulses in a normal dispersion fiber laser,” Opt. Express 19(17), 16303–16308 (2011).
[Crossref] [PubMed]

S. Chouli and P. Grelu, “Rains of solitons in a fiber laser,” Opt. Express 17(14), 11776–11781 (2009).
[Crossref] [PubMed]

I. A. Yarutkina, O. V. Shtyrina, M. P. Fedoruk, and S. K. Turitsyn, “Numerical modeling of fiber lasers with long and ultra-long ring cavity,” Opt. Express 21(10), 12942–12950 (2013).
[Crossref] [PubMed]

S. V. Smirnov, S. M. Kobtsev, and S. V. Kukarin, “Efficiency of non-linear frequency conversion of double-scale pico-femtosecond pulses of passively mode-locked fiber laser,” Opt. Express 22(1), 1058–1064 (2014).
[Crossref] [PubMed]

J. Li, Z. Zhang, Z. Sun, H. Luo, Y. Liu, Z. Yan, C. Mou, L. Zhang, and S. K. Turitsyn, “All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes,” Opt. Express 22(7), 7875–7882 (2014).
[Crossref] [PubMed]

S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17(23), 20707–20713 (2009).
[Crossref] [PubMed]

S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, “Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation,” Opt. Express 20(24), 27447–27453 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. M. Soto-Crespo, P. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[Crossref] [PubMed]

Other (4)

M. Fermann, Nonlinear polarization evolution in passively modelocked fiber lasers (Compact Sources of Ultrashort Pulses, I. N. Duling (Ed.), Cambridge University, 1995), Chap. 5.

N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).

S. V. Smirnov, S. M. Kobtsev, S. V. Kukarin, and S. K. Turitsyn, Mode-locked fibre lasers with high-energy pulses (Laser Systems for Applications, K.Jakubczak (Ed.), InTech, 2011), Chap. 3.

W. H. Renninger and F. W. Wise, Dissipative Soliton Fiber Lasers (Fiber lasers, O. G. Okhotnikov (Ed.), Wiley-VCH Verlag GmbH & Co. KgaA, 2012), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental layout: PC1, PC2 – polarisation controllers, WDM – fiber spectral combiner, MO – master oscillator, PA – power amplifier.
Fig. 2
Fig. 2 (a) Radiation spectra of single-scale (black curve) and double-scale (red curve) pulses at the output of the master oscillator; (b) Auto-correlation functions of single-scale (black curve) and double-scale (red curve) pulses at the output of the master oscillator.
Fig. 3
Fig. 3 Cascaded SRS spectra of single-scale (black curves) and double-scale (red curves) pulses. The average radiation power at the input of the P2O5-doped silica fiber is specified at the right.
Fig. 4
Fig. 4 (а): Simulated power statistics for double-scale and single-scale (sech2 and Gaussian pulse): fraction of pulse energy stored in parts of pulse where instantaneous power P related to max (peak) power Pmax is less than η. Figure 4(b) and 4(c): Temporal intensity distribution of single-scale (b) and double-scale (c) pulses at the output of the long extra-cavity fiber at different average input powers (shown at upper right-hand corners).

Metrics