Abstract

To solve the pseudoscopic problem, we propose a one-step integral imaging system with negative refractive index materials, which can avoid the deterioration in resolution inherent to the optical or digital two-step processes. Specifically, the proposed method is based on the novel feature of negative refractive index materials, bending light to a negative angle relative to the surface normal. The pseudoscopic imaging property of the negative refractive index material slab is theoretically investigated. For formation of orthoscopic reconstructed images, the matching condition of the negative index lens array and the positive index lens array is deduced. Two types of conceptual prototypes of integral imaging system with negative refractive index materials are designed. Experimental results show the validity of the proposed method. To the best of our knowledge, this is the first time to explore the application of negative index materials in eliminating the pseudoscopic effect in integral imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements

Jiwoon Yeom, Keehoon Hong, Youngmo Jeong, Changwon Jang, and Byoungho Lee
Opt. Express 22(11) 13659-13670 (2014)

Real object pickup method of integral imaging using offset lens array

Junkyu Yim, Ki-Hong Choi, and Sung-Wook Min
Appl. Opt. 56(13) F167-F172 (2017)

The use of a negative index planoconcave lens array for wide-viewing angle integral imaging

Hwi Kim, Joonku Hahn, and Byoungho Lee
Opt. Express 16(26) 21865-21880 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  2. K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
    [Crossref]
  3. D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
    [Crossref] [PubMed]
  4. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [Crossref] [PubMed]
  5. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
    [Crossref]
  6. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  7. H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am. 21(3), 171 (1931).
    [Crossref]
  8. C. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. 58(1), 71–74 (1968).
    [Crossref]
  9. M. Martinez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13(23), 9175–9180 (2005).
    [Crossref] [PubMed]
  10. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
    [Crossref] [PubMed]
  11. J.-H. Jung, J. Kim, and B. Lee, “Solution of pseudoscopic problem in integral imaging for real-time processing,” Opt. Lett. 38(1), 76–78 (2013).
    [Crossref] [PubMed]
  12. M. Martínez-Corral, A. Dorado, H. Navarro, G. Saavedra, and B. Javidi, “Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus,” Appl. Opt. 53(22), E19–E25 (2014).
    [Crossref] [PubMed]
  13. C. B. Burckhardt, R. J. Collier, and E. T. Doherty, “Formation and inversion of pseudoscopic images,” Appl. Opt. 7(4), 627–631 (1968).
    [Crossref] [PubMed]
  14. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37(11), 2034–2045 (1998).
    [Crossref] [PubMed]
  15. J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
    [Crossref] [PubMed]
  16. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  17. J. S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
    [Crossref] [PubMed]
  18. J. Yeom, K. Hong, Y. Jeong, C. Jang, and B. Lee, “Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements,” Opt. Express 22(11), 13659–13670 (2014).
    [Crossref] [PubMed]
  19. H. Kim, J. Hahn, and B. Lee, “The use of a negative index planoconcave lens array for wide-viewing angle integral imaging,” Opt. Express 16(26), 21865–21880 (2008).
    [Crossref] [PubMed]
  20. W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
    [Crossref]
  21. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
    [Crossref] [PubMed]
  22. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  23. D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004).
    [Crossref] [PubMed]
  24. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  25. C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
    [Crossref]
  26. J. W. Simmons and M. J. Guttmann, States, Waves, and Photons: A Modern Introduction to Light (Addison-Wesley, 1970), Chap. 1.
  27. H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
    [Crossref]
  28. H. Navarro, J. C. Barreiro, G. Saavedra, M. Martínez-Corral, and B. Javidi, “High-resolution far-field integral-imaging camera by double snapshot,” Opt. Express 20(2), 890–895 (2012).
    [Crossref] [PubMed]
  29. K. G. Suffern, Ray Tracing from the Ground Up (A K Peters, 2007).
  30. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20(6), 996–1004 (2003).
    [Crossref] [PubMed]
  31. Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
    [Crossref] [PubMed]

2014 (2)

2013 (3)

2012 (1)

2011 (2)

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

2010 (2)

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-Corral, and B. Javidi, “3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC),” Opt. Express 18(25), 25573–25583 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2007 (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

2006 (3)

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
[Crossref]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[Crossref] [PubMed]

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

2005 (1)

2004 (3)

J. S. Jang and B. Javidi, “Three-dimensional projection integral imaging using micro-convex-mirror arrays,” Opt. Express 12(6), 1077–1083 (2004).
[Crossref] [PubMed]

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004).
[Crossref] [PubMed]

2003 (2)

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20(6), 996–1004 (2003).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1998 (1)

1997 (1)

1968 (2)

1931 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Arai, J.

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Barreiro, J. C.

Basov, D. N.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
[Crossref]

Beausoleil, R. G.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Brug, J.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Burckhardt, C.

Burckhardt, C. B.

Chen, N.

Choi, H.-J.

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Collier, R. J.

Deng, H.

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

Doherty, E. T.

Dorado, A.

Fattal, D.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Fiorentino, M.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Greegor, R.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Hahn, J.

Hong, J.

Hong, K.

Hoshino, H.

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Iizuka, K.

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

Ives, H. E.

Jang, C.

Jang, J. S.

Javidi, B.

Jeong, Y.

Jung, J. H.

Jung, J.-H.

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Kawai, H.

Kim, H.

Kim, J.

Kim, Y.

Koltenbah, B. E.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

Lee, B.

Li, D.-H.

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

Li, K.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Martinez-Corral, M.

Martínez-Corral, M.

Martínez-Cuenca, R.

Min, S.-W.

Navarro, H.

Nielsen, J.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Okano, F.

Okui, M.

Padilla, W. J.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
[Crossref]

Parazzoli, C.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

Park, G.

Park, J.-H.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Peng, Z.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Saavedra, G.

Schurig, D.

D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004).
[Crossref] [PubMed]

Shalaev, V. M.

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Smith, D. R.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
[Crossref]

D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004).
[Crossref] [PubMed]

Stern, A.

Tanielian, M.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Thompson, M.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Tran, T.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Vetter, A.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Vier, D.

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

Vo, S.

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Wang, F.-N.

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Wang, Q.-H.

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

Xiao, X.

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Yeom, J.

Yuyama, I.

Appl. Opt. (8)

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

M. Martínez-Corral, A. Dorado, H. Navarro, G. Saavedra, and B. Javidi, “Three-dimensional display by smart pseudoscopic-to-orthoscopic conversion with tunable focus,” Appl. Opt. 53(22), E19–E25 (2014).
[Crossref] [PubMed]

C. B. Burckhardt, R. J. Collier, and E. T. Doherty, “Formation and inversion of pseudoscopic images,” Appl. Opt. 7(4), 627–631 (1968).
[Crossref] [PubMed]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37(11), 2034–2045 (1998).
[Crossref] [PubMed]

J. Arai, H. Kawai, and F. Okano, “Microlens arrays for integral imaging system,” Appl. Opt. 45(36), 9066–9078 (2006).
[Crossref] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
[Crossref] [PubMed]

Y. Kim, G. Park, J. H. Jung, J. Kim, and B. Lee, “Color moiré pattern simulation and analysis in three-dimensional integral imaging for finding the moiré-reduced tilted angle of a lens array,” Appl. Opt. 48(11), 2178–2187 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Parazzoli, R. Greegor, J. Nielsen, M. Thompson, K. Li, A. Vetter, M. Tanielian, and D. Vier, “Performance of a negative index of refraction lens,” Appl. Phys. Lett. 84(17), 3232–3234 (2004).
[Crossref]

J. Disp. Technol. (1)

H. Deng, Q.-H. Wang, D.-H. Li, and F.-N. Wang, “Realization of undistorted and orthoscopic integral imaging without black zone in real and virtual fields,” J. Disp. Technol. 7(5), 255–258 (2011).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

J. Phys. Theor. Appl. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. Theor. Appl. 7(1), 821–825 (1908).
[Crossref]

Mater. Today (1)

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7–8), 28–35 (2006).
[Crossref]

Nat. Photonics (1)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Nature (2)

D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495(7441), 348–351 (2013).
[Crossref] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Opt. Photonics News (1)

K. Iizuka, “Welcome to the wonderful world of 3D: introduction, principles and history,” Opt. Photonics News 17(7), 42–51 (2006).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Schurig and D. R. Smith, “Negative index lens aberrations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 065601 (2004).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[Crossref] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Other (2)

K. G. Suffern, Ray Tracing from the Ground Up (A K Peters, 2007).

J. W. Simmons and M. J. Guttmann, States, Waves, and Photons: A Modern Introduction to Light (Addison-Wesley, 1970), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Refractive imaging mechanism of an NIM slab.
Fig. 2
Fig. 2 Structures and ray traces of (a) negative index elemental planoconvex lens and (b) positive index elemental planoconvex lens.
Fig. 3
Fig. 3 Near-field InIm system using NIMs: (a) the pickup part; (b) the display part.
Fig. 4
Fig. 4 Far-field InIm system using NIMs: (a) the pickup part; (b) the display part.
Fig. 5
Fig. 5 (a) Pickup part of InIm using NIMs and (b) EIs recorded by the pickup part of InIm shown in (a).
Fig. 6
Fig. 6 InIm display setup with a PILA.
Fig. 7
Fig. 7 Orthoscopic reconstructed perspectives with an InIm system using NIMs captured by a digital camera placed at ( ± 10 cm, ± 10 cm, 93 cm).
Fig. 8
Fig. 8 Pseudoscopic reconstructed perspectives with a conventional InIm system captured by a digital camera placed at ( ± 10 cm, ± 10 cm, 93 cm).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( r' tanU' )=( M 11 M 12 M 21 M 22 )( r tanU ) =( 1 L' 0 1 )( 1 0 0 - n 0 1 sin 2 I n 1 2 n 0 2 sin 2 I )( 1 -L 0 1 )( r tanU )
( M 11 M 12 M 21 M 22 )=( 1 -L-L' n 0 1 sin 2 I n 1 2 n 0 2 sin 2 I 0 n 0 1 sin 2 I n 1 2 n 0 2 sin 2 I )
L'=L n 1 2 n 0 2 sin 2 I n 0 1 sin 2 I
( A n B n C n D n )=( 1 l n ' 0 1 )( 1 0 n 2 n 1 n 2 R n n 1 n 2 )( 1 l n 0 1 ) =( 1 n 2 n 1 n 2 R n l n ' l n + l n ' ( n 2 n 1 n 2 R n l n + n 1 n 2 ) n 2 n 1 n 2 R n n 2 n 1 n 2 R n l n + n 1 n 2 )
1 l n ' + 1 l n · n 1 n 2 = n 2 n 1 n 2 R n
( A p B p C p D p )=( 1 l p ' 0 1 )( 1 0 n 3 n 0 n 3 R p n 0 n 3 )( 1 l p 0 1 ) =( 1 n 3 n 0 n 3 R p l p ' l p + l p ' ( n 3 n 0 n 3 R p l p + n 0 n 3 ) n 3 n 0 n 3 R p n 3 n 0 n 3 R p l p + n 0 n 3 )
1 l p ' + 1 l p · n 0 n 3 = n 3 n 0 n 3 R p
n 2 + n 3 =0 R n = R p
H[ L g +( N1 ) ]p

Metrics