Abstract

We demonstrate fully-etched fiber-waveguide grating couplers with sub-wavelength gratings showing high coupling efficiency as well as low back reflections for both transverse electric (TE) and transverse magnetic (TM) modes. The power reflection coefficients for the TE and TM modes have been significantly suppressed to −16.2 dB and −20.8 dB, respectively. Focusing grating lines have also been used to reduce the footprint of the design. Our sub-wavelength grating couplers for the TE and TM modes show respective measured insertion losses of 4.1 dB and 3.7 dB with 1-dB bandwidths of 30.6 nm (3-dB bandwidth of 52.3 nm) and 47.5 nm (3-dB bandwidth of 81.5 nm), respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
    [CrossRef] [PubMed]
  2. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
    [CrossRef]
  3. W. S. Zaoui, A. Kunze, W. Vogel, M. Berroth, J. Butschke, F. Letzkus, and J. Burghartz, “Bridging the gap between optical fibers and silicon photonic integrated circuits,” Opt. Express 22, 1277–1286 (2014).
    [CrossRef] [PubMed]
  4. R. Halir, P. Cheben, S. Janz, D.-X. Xu, Í. Molina-Fernández, and J. G. Wangüemert-Pérez, “Waveguide grating coupler with subwavelength microstructures,” Opt. Lett. 34, 1408–1410 (2009).
    [CrossRef] [PubMed]
  5. R. Halir, P. Cheben, J. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernández, “Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered sub-wavelength structure,” Opt. Lett. 35, 3243–3245 (2010).
    [CrossRef] [PubMed]
  6. X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.
  7. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
    [CrossRef]
  8. Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
    [CrossRef]
  9. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
    [CrossRef] [PubMed]
  10. Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.
  11. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [CrossRef]
  12. http://genisys-gmbh.com/ .
  13. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004).
    [CrossRef]
  14. X. Chen, K. Xu, Z. Cheng, C. K. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
    [CrossRef] [PubMed]
  15. L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.
  16. J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.
  17. R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
    [CrossRef]

2014

2012

X. Chen, K. Xu, Z. Cheng, C. K. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[CrossRef] [PubMed]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
[CrossRef]

2011

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36, 796–798 (2011).
[CrossRef] [PubMed]

2010

2009

2007

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

2004

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004).
[CrossRef]

Absil, P.

Aida, Y.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Baehr-Jones, T.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Bedard, D.

Berroth, M.

Bogaerts, W.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[CrossRef] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Bojko, R. J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Burghartz, J.

Butschke, J.

Cheben, P.

Chen, R. T.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Chen, X.

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
[CrossRef]

X. Chen, K. Xu, Z. Cheng, C. K. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[CrossRef] [PubMed]

Chrostowski, L.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Cone, C.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Covey, J.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

De Dobbelaere, P.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Densmore, A.

Ding, R.

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Ferguson, J.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

Flueckiger, J.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Fung, C. K.

Gloeckner, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Halir, R.

He, L.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Hochberg, M.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

Hosseini, A.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Jaeger, N. A.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Janz, S.

Klein, J.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Kunze, A.

Kwong, D.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Lapointe, J.

Lepage, G.

Letzkus, F.

Li, J.

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Lin, C.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

Liu, A.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Ma, R.

Masini, G.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

McGuire, D.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Mekis, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Molina-Fernández, I.

Molina-Fernández, Í.

Narasimha, A.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Pinguet, T.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Pond, J.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

Rahmat-Samii, Y.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004).
[CrossRef]

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004).
[CrossRef]

Roelkens, G.

Sahni, S.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Schmid, J.

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Selvaraja, S.

Shi, W.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Subbaraman, H.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Tsang, H. K.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Van Thourhout, D.

D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, “High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform,” Opt. Express 18, 18278–18283 (2010).
[CrossRef] [PubMed]

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

Verheyen, P.

Vermeulen, D.

Vogel, W.

Wang, X.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

Wang, Y.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Wangüemert-Pérez, J. G.

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
[CrossRef]

Xu, D.-X.

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
[CrossRef]

X. Chen, K. Xu, Z. Cheng, C. K. Fung, and H. K. Tsang, “Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers,” Opt. Lett. 37, 3483–3485 (2012).
[CrossRef] [PubMed]

Xu, X.

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Xuan, Z.

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Yun, H.

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Zaoui, W. S.

Zhang, Y.

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Appl. Phys. Lett.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Apodized focusing subwavelength grating couplers for suspended membrane waveguides,” Appl. Phys. Lett. 101, 101104 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. De Dobbelaere, “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron. 17, 597–608 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[CrossRef]

IEEE Trans. Antennas Propag.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antennas Propag. 52, 397–407 (2004).
[CrossRef]

J. Vacuum Sci. Technol. B

R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, and Y. Aida, “Electron beam lithography writing strategies for low loss, high confinement silicon optical waveguides,” J. Vacuum Sci. Technol. B 29, 06F309 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Other

L. Chrostowski, J. Flueckiger, C. Lin, M. Hochberg, J. Pond, J. Klein, J. Ferguson, and C. Cone, “Design methodologies for silicon photonic integrated circuits,” in SPIE OPTO (2014), p. 89890G.

J. Pond, C. Cone, L. Chrostowski, J. Klein, J. Flueckiger, A. Liu, D. McGuire, and X. Wang, “A complete design flow for silicon photonics,” in SPIE Photonics Europe (2014), pp. 9133–9139.

http://genisys-gmbh.com/ .

X. Xu, H. Subbaraman, J. Covey, D. Kwong, A. Hosseini, and R. T. Chen, “CMOS compatible subwavelength grating couplers for silicon integrated photonics,” in Proceedings of IEEE Photonics Conference (2012), pp. 350–351.

Y. Zhang, T. Baehr-Jones, R. Ding, T. Pinguet, Z. Xuan, and M. Hochberg, “Silicon multi-project wafer platforms for optoelectronic system integration,” in Proceedings of IEEE Group IV Photonics Conference (2012), pp. 63–65.
[CrossRef]

Y. Wang, W. Shi, X. Wang, J. Flueckiger, H. Yun, N. A. Jaeger, and L. Chrostowski, “Fully etched grating coupler with low back reflection,” in SPIE Photonics North (2013), p. 89150U.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM pictures of the focusing sub-wavelength grating coupler. (a) top view; (b) sidewall view.

Fig. 2
Fig. 2

Cross-section diagrams of various types of gratings (a) shallow-etched grating; (b) regular fully-etched grating; (c) fully-etched sub-wavelength grating.

Fig. 3
Fig. 3

(a) 2D energy distribution of sub-wavelength grating couplers formed by quasi-squares; (b) energy distribution along the 1-D cutline across the 2-D simulation of sub-wavelength grating coupler formed by quasi-squares; (c) 2D energy distribution of sub-wavelength grating couplers formed by sub-wavelength lines; (d) energy distribution along 1-D cutlines across the 2-D simulations of sub-wavelength grating couplers formed by sub-wavelength grating lines.

Fig. 4
Fig. 4

(a) Simulated transmission and reflection spectra for the optimized sub-wavelength grating coupler and the shallow-etched grating coupler with uniform grating for the TE00 mode; (b) simulated transmission and reflection spectra for the optimized sub-wavelength grating coupler and the shallow-etched grating coupler with uniform grating for the TM00 mode.

Fig. 5
Fig. 5

(a) Schematic of the input-waveguide-output circuit in Interconnect; (b) simulated transmission spectra of input-waveguide-ouput circuits for sub-wavelength grating couplers for the TE00 (blue line) and TM00 (green line) modes.

Fig. 6
Fig. 6

(a) Simulated sensitivities of the grating period, the grating width, and the sub-wavelength grating for the sub-wavelength TE grating coupler; (b) Measured sensitivities for the sub-wavelength TE grating coupler; (c) Simulated sensitivities for the sub-wavelength TM grating coupler; (d) Measured sensitivities for the sub-wavelength TM grating coupler.

Fig. 7
Fig. 7

Simulated and measured transmission spectra of the fabricated sub-wavelength TE grating coupler assuming the width of the sub-wavelength grating is 89 nm; inset is the spectrum near the central wavelength.

Fig. 8
Fig. 8

(a) Measured spectra of 11 standard sub-wavelength TM grating couplers; (b) comparison of measured insertion losses of the 11 standard sub-wavelength TM grating couplers and the simulated insertion loss; (c) comparison of the measured 1-dB bandwidths of the 11 standard sub-wavelength TM grating couplers and the simulated 1-dB bandwidth; (d) measured spectra of sub-wavelength TM grating couplers with various grating widths; (e) measured spectra of sub-wavelength TM grating couplers with various grating periods; (f) measured spectra of sub-wavelength TM grating couplers with various widths of sub-wavelength grating.

Tables (1)

Tables Icon

Table 1 Simulated and measured sensitivities of the central wavelength offset to various design parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P wg ( z ) = P wg ( z = 0 ) exp ( 2 α z )
Δ λ = η 1 dB | d λ d θ | = η 1 dB | Λ n c cos ( θ ) 1 Λ d n eff ( λ ) d λ |

Metrics