Abstract

Several approaches exist to perform acousto-optic imaging of multiple-scattering media such as biological samples. Up to now, most of the coherent detection methods use holographic setup based on photorefractive crystals such as BSO or SPS. One of the issue of these techniques is the moderate response time compared to the speckle decorrelation time in biological sample. We introduce a new approach for the holographic detection based on two-wave mixing in a Nd:YVO4 gain medium enabling us to perform a fast wavefront adaption (50 μs) of the speckle field from a multiple-scattering sample.

© 2014 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
    [CrossRef]
  2. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [CrossRef]
  3. G. Rousseau, A. Blouin, and J.-P. Monchalin, “Ultrasound-modulated optical imaging using a high-power pulsed laser and a double-pass confocal fabry-perot interferometer,” Opt. Lett. 34, 3445–3447 (2009).
    [CrossRef]
  4. X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
    [CrossRef]
  5. H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
    [CrossRef] [PubMed]
  6. S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
    [CrossRef] [PubMed]
  7. P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
    [CrossRef] [PubMed]
  8. M. Gross, P. Goy, B. C. Forget, M. Atlan, F. Ramaz, A. C. Boccara, and A. K. Dunn, “Heterodyne detection of multiply scattered monochromatic light with a multipixel detector,” Opt. Lett. 30, 1357–1359 (2005).
    [CrossRef] [PubMed]
  9. Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).
  10. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).
  11. A. Brignon and J.-P. Huignard, “Two-wave mixing in Nd:YAG by gain saturation,” Opt. Lett. 18, 1639–1641 (1993).
    [CrossRef] [PubMed]
  12. R. Soulard, A. Brignon, J. P. Huignard, and R. Moncorge, “Non-degenerate near-resonant two-wave mixing in diode pumped Nd3+ and Yb3+ doped crystals in the presence of athermal refractive index grating,” J. Opt. Soc. Am. B 27, 2203–2210 (2010).
    [CrossRef]
  13. P. Sillard, A. Brignon, and J.-P. Huignard, “Loop resonators with self-pumped phase-conjugate mirrors in solid-state saturable amplifiers,” J. Opt. Soc. Am. B 14, 2049–2058 (1997).
    [CrossRef]
  14. M. J. Damzen, A. Boyle, and A. Minassian, “Adaptive gain interferometry: a new mechanism for optical metrology with speckle beams,” Opt. Lett. 30, 2230–2232 (2005).
    [CrossRef] [PubMed]
  15. B. Jayet, J.-P. Huignard, and F. Ramaz, “Optical phase conjugation in Nd:YVO4 for acousto-optic detection in scattering media,” Opt. Lett. 38, 1256–1258 (2013).
    [CrossRef] [PubMed]
  16. P. Yeh, “Two-wave mixing in nonlinear media,” IEEE Journal of Quantum Electronics 25, 484–519 (1989).
    [CrossRef]
  17. M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
    [CrossRef]
  18. M. Lesaffre, F. Jean, F. Ramaz, A. C. Boccara, M. Gross, P. Delaye, and G. Roosen, “In situ monitoring of the photorefractive response time in a self-adaptive wavefront holography setup developed for acousto-optic imaging,” Opt. Express 15, 1030–1042 (2007).
    [CrossRef] [PubMed]

2014

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

2013

2012

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

2011

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

2010

2009

2007

2005

2001

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

1997

1993

1989

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE Journal of Quantum Electronics 25, 484–519 (1989).
[CrossRef]

Atlan, M.

Blouin, A.

Boccara, A. C.

Boyle, A.

Brignon, A.

Crofts, G. J.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Damzen, M. J.

M. J. Damzen, A. Boyle, and A. Minassian, “Adaptive gain interferometry: a new mechanism for optical metrology with speckle beams,” Opt. Lett. 30, 2230–2232 (2005).
[CrossRef] [PubMed]

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Delaye, P.

Dunn, A. K.

Dunsby, C.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

Eckersley, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

Elson, D. S.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

Farahi, S.

Forget, B. C.

Genack, A. Z.

Goy, P.

Grabar, A. A.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

S. Farahi, G. Montemezzani, A. A. Grabar, J.-P. Huignard, and F. Ramaz, “Photorefractive acousto-optic imaging in thick scattering media at 790 nm with a Sn2P2S6:Te crystal,” Opt. Lett. 35, 1798–1800 (2010).
[CrossRef] [PubMed]

Gross, M.

Hemmer, P. R.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Huignard, J. P.

Huignard, J.-P.

Jayet, B.

Jean, F.

Kempe, M.

Kim, C.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Kothapalli, S.-R.

X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
[CrossRef]

Kroll, S.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Lai, P.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

Larionov, M.

Lesaffre, M.

Li, R.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

Liu, H.

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
[CrossRef]

Liu, Y.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

Ma, C.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

Minassian, A.

Monchalin, J.-P.

Moncorge, R.

Montemezzani, G.

Ramaz, F.

Rippe, L.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Roosen, G.

Rosas, E.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Rousseau, G.

Sabooni, M.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

Sillard, P.

Soulard, R.

Suzuki, Y.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

Tang, M.-X.

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

Trew, M.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Wang, L. V.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
[CrossRef]

Xu, X.

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
[CrossRef]

Yeh, P.

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE Journal of Quantum Electronics 25, 484–519 (1989).
[CrossRef]

Zaslavsky, D.

Zhang, H.

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

Applied Physics Letters

H. Zhang, M. Sabooni, L. Rippe, C. Kim, S. Kroll, L. V. Wang, and P. R. Hemmer, “Slow light for deep tissue imaging with ultrasound modulation,” Applied Physics Letters 100, 131102 (2012).
[CrossRef] [PubMed]

IEEE Journal of Quantum Electronics

P. Yeh, “Two-wave mixing in nonlinear media,” IEEE Journal of Quantum Electronics 25, 484–519 (1989).
[CrossRef]

Interface Focus

D. S. Elson, R. Li, C. Dunsby, R. Eckersley, and M.-X. Tang, “Ultrasound-mediated optical tomography: a review of current methods,” Interface Focus 1, 632–648 (2011).
[CrossRef]

J. Biomed. Opt

X. Xu, S.-R. Kothapalli, H. Liu, and L. V. Wang, “Spectral hole burning for ultrasound-modulated optical tomography of thick tissue,” J. Biomed. Opt 15, 066018 (2010).
[CrossRef]

P. Lai, X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing in biological tissue,” J. Biomed. Opt 17, 030506 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

M. J. Damzen, M. Trew, E. Rosas, and G. J. Crofts, “Continuous-wave Nd:YVO4 grazing-incidence laser with 22.5 w output power and 64% conversion efficiency,” Opt. Commun. 196, 237–241 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

SPIE

Y. Liu, P. Lai, C. Ma, X. Xu, Y. Suzuki, A. A. Grabar, and L. V. Wang, “High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm,” SPIE,  8943, 894339 (2014).

Other

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics