Abstract

We demonstrate independent and simultaneous manipulation of light beams of different wavelengths by a single hologram, which is displayed on a phase-only liquid crystal spatial light modulator (SLM). The method uses the high dynamic phase modulation range of modern SLMs, which can shift the phase of each pixel in a range between 0 up to 10π, depending on the readout wavelength. The extended phase range offers additional degrees of freedom for hologram encoding. Knowing the phase modulation properties of the SLM (i.e. the so-called lookup table) in the entire exploited wavelength range, an exhaustive search algorithm allows to combine different independently calculated 2π-holograms into a multi-level hologram with a phase range extending over several multiples of 2π. The combined multi-level hologram then reconstructs the original diffractive patterns with only small phase errors at preselected wavelengths, thus projecting the desired image fields almost without any crosstalk. We demonstrate this feature by displaying a static hologram at an SLM which is read out with an incoherent red-green-blue (RGB) beam, projecting a color image at a camera chip. This is done for both, a Fourier setup which needs a lens for image focusing, and in a ”lensless” Fresnel setup, which also avoids the appearance of a focused zero-order spot in the image center. The experimentally obtained efficiency of a two-colour combination is on the order of 83% for each wavelength, with a crosstalk level between the two colour channels below 2%, whereas a three-colour combination still reaches an efficiency of about 60% and a crosstalk level below 5%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Colored point spread function engineering for parallel confocal microscopy

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 24(24) 27395-27402 (2016)

Broadband suppression of the zero diffraction order of an SLM using its extended phase modulation range

Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(14) 17590-17599 (2014)

Tilt-effect of holograms and images displayed on a spatial light modulator

Walter Harm, Clemens Roider, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 23(23) 30497-30511 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
    [Crossref]
  2. E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), 39, 1074–1079.
  3. E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
    [Crossref]
  4. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, “Programmable Array Microscopy with a Ferroelectric Liquid-Crystal Spatial Light Modulator,” Appl. Opt. 39, 2664–2669 (2000).
    [Crossref]
  5. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
    [Crossref]
  6. Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
    [Crossref]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  8. D. G. Grier and S.-H. Lee, “Multi-color holographic optical traps,” U.S. patent 7,759,020B2 (20 Jul 2010).
  9. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [Crossref] [PubMed]
  10. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
    [Crossref]
  11. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
    [Crossref]
  12. F. Yaras and L. Onural, “Color Holographic Reconstruction Using Multiple SLMs and LED Illumination,” Proc. SPIE 7237, 72370O1 (2009).
  13. H. Zheng, T. Wang, L. Dai, and Yingjie Yu, “Holographic imaging of full-color real-existing three-dimensional objects with computer-generated sequential kinoforms,” Chin. Opt. Lett. 9, 040901 (2011).
    [Crossref]
  14. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20, 25130–25136 (2012).
    [Crossref] [PubMed]
  15. T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
    [Crossref]
  16. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17, 20840–20846 (2009).
    [Crossref] [PubMed]
  17. G. Kim, J. A. Domnguez-Caballero, and R. Menon, “Design and analysis of multi-wavelength diffractive optics,” Opt. Express 20, 2814–2823 (2012).
    [Crossref] [PubMed]
  18. T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
    [Crossref] [PubMed]
  19. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34, 2469–2475 (1995).
    [Crossref] [PubMed]
  20. D. Faklis and G. M. Morris, “Polychromatic diffractive lenses,” U.S. patent 5,589,982 (31 December 1996).
  21. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
    [Crossref] [PubMed]
  22. S. Noach, A. Lewis, Y. Arieli, and N. Eisenberg, “Integrated diffractive and refractive elements for spectrum shaping,” Appl. Opt. 35, 3635–3639 (1996).
    [Crossref] [PubMed]
  23. J. Bengtsson, “Kinoforms designed to produce different fan-out patterns for two wavelengths,” Appl. Opt. 37, 2011–2020 (1998).
    [Crossref]
  24. A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
    [Crossref]
  25. A. J. Caley and M. R. Taghizadeh, “Analysis of the effects of bias phase and wavelength choice on the design of dual-wavelength diffractive optical elements,” J. Opt. Soc. Am. A 23, 193–198 (2006).
    [Crossref]
  26. I. M. Barton, P. Blair, and M. Taghizadeh, “Dual-wavelength operation diffractive phase elements for pattern formation,” Opt. Express 1, 54–59 (1997).
    [Crossref] [PubMed]
  27. T. R. M. Sales and D. H. Raguin, “Multiwavelength operation with thin diffractive elements,” Appl. Opt. 38, 3012–3018 (1999).
    [Crossref]
  28. Y. Ogura, N. Shirai, J. Tanida, and Y. Ichioka, “Wavelength-multiplexing diffractive phase elements: design, fabrication, and performance evaluation,” J. Opt. Soc. Am. A 18, 1082–1092 (2001).
    [Crossref]
  29. V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38, 4663–4666 (2013).
    [Crossref] [PubMed]
  30. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
    [Crossref]
  31. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).
  32. B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).
  33. Image by courtesy of Mike Vogt, URL: http://myfly-fotografie.de/ .
  34. A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett., accepted (2014).

2013 (1)

2012 (2)

2011 (2)

H. Zheng, T. Wang, L. Dai, and Yingjie Yu, “Holographic imaging of full-color real-existing three-dimensional objects with computer-generated sequential kinoforms,” Chin. Opt. Lett. 9, 040901 (2011).
[Crossref]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

2010 (1)

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
[Crossref]

2009 (3)

F. Yaras and L. Onural, “Color Holographic Reconstruction Using Multiple SLMs and LED Illumination,” Proc. SPIE 7237, 72370O1 (2009).

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display,” Opt. Express 17, 20840–20846 (2009).
[Crossref] [PubMed]

2008 (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

2007 (1)

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

2006 (1)

2005 (1)

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
[Crossref]

2004 (2)

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

2001 (1)

2000 (1)

1999 (2)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

T. R. M. Sales and D. H. Raguin, “Multiwavelength operation with thin diffractive elements,” Appl. Opt. 38, 3012–3018 (1999).
[Crossref]

1998 (1)

1997 (2)

1996 (1)

1995 (2)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

1969 (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Albero, J.

Altissimo, M.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Arieli, Y.

Barton, I. M.

Bengtsson, J.

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett., accepted (2014).

Blair, P.

Buckley, E.

E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), 39, 1074–1079.

Cabrini, S.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Calero, V.

Caley, A. J.

A. J. Caley and M. R. Taghizadeh, “Analysis of the effects of bias phase and wavelength choice on the design of dual-wavelength diffractive optical elements,” J. Opt. Soc. Am. A 23, 193–198 (2006).
[Crossref]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
[Crossref]

Cao, Z.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Cojoc, D.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Coppey-Moisan, M.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dai, L.

Di Fabrizio, E.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Domnguez-Caballero, J. A.

Ducin, I.

Eisenberg, N.

Emiliani, V.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Fajst, A.

Faklis, D.

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
[Crossref] [PubMed]

D. Faklis and G. M. Morris, “Polychromatic diffractive lenses,” U.S. patent 5,589,982 (31 December 1996).

Ferrari, E.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Garbin, V.

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

García-Martínez, P.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

D. G. Grier and S.-H. Lee, “Multi-color holographic optical traps,” U.S. patent 7,759,020B2 (20 Jul 2010).

Hayasaki, Y.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Ichioka, Y.

Ito, T.

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12, 4320–4325 (2004).
[Crossref] [PubMed]

Itoh, M.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett., accepted (2014).

Jiang, B.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Kakarenko, K.

Kang, H.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
[Crossref]

Kim, G.

Kolodziejczyk, A.

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Kress, B.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Lee, S.-H.

D. G. Grier and S.-H. Lee, “Multi-color holographic optical traps,” U.S. patent 7,759,020B2 (20 Jul 2010).

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

Lewis, A.

Li, C.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Love, G. D.

Makowski, M.

Masuda, N.

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

McCabe, E. M.

Menon, R.

Meyrueis, P.

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Moreno, I.

Morris, G. M.

D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34, 2462–2468 (1995).
[Crossref] [PubMed]

D. Faklis and G. M. Morris, “Polychromatic diffractive lenses,” U.S. patent 5,589,982 (31 December 1996).

Mu, Q.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Nishida, N.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

Noach, S.

Ogura, Y.

Okano, K.

Onural, L.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
[Crossref]

F. Yaras and L. Onural, “Color Holographic Reconstruction Using Multiple SLMs and LED Illumination,” Proc. SPIE 7237, 72370O1 (2009).

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Raguin, D. H.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett., accepted (2014).

Sales, T. R. M.

Sánchez-López, M. M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Shaw, A. J.

Shimobaba, T.

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

Shirai, N.

Shiraki, A.

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

Siemion, A.

Smith, P. J.

Sommargren, G. E.

Suszek, J.

Sweeney, D. W.

Sypek, M.

Taghizadeh, M.

Taghizadeh, M. R.

A. J. Caley and M. R. Taghizadeh, “Analysis of the effects of bias phase and wavelength choice on the design of dual-wavelength diffractive optical elements,” J. Opt. Soc. Am. A 23, 193–198 (2006).
[Crossref]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
[Crossref]

Tanida, J.

Taylor, C. M.

Waddie, A. J.

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
[Crossref]

Wang, T.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Xia, M.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Xuan, L.

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Yaras, F.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
[Crossref]

F. Yaras and L. Onural, “Color Holographic Reconstruction Using Multiple SLMs and LED Illumination,” Proc. SPIE 7237, 72370O1 (2009).

Yatagai, T.

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

Yu, Yingjie

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

Zheng, H.

Appl. Opt. (7)

Chin. Opt. Lett. (1)

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2(5), 1–14 (2008).
[Crossref]

IBM J. Res. Dev. (1)

L. B. Lesem, P. M. Hirsch, and J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Dev. 13, 150–155 (1969).
[Crossref]

J. Displ. Tech. (1)

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Displ. Tech. 6, 443–454 (2010).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

T. Shimobaba, A. Shiraki, N. Masuda, and T. Ito, “An electroholographic colour reconstruction by time division switching of reference lights,” J. Opt. A: Pure Appl. Opt. 9, 757–760 (2007).
[Crossref]

A. J. Caley, A. J. Waddie, and M. R. Taghizadeh, “A novel algorithm for designing diffractive optical elements for two colour far-field pattern formation,” J. Opt. A: Pure Appl. Opt. 7, 276–279 (2005).
[Crossref]

J. Opt. Soc. Am. A (2)

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011).
[Crossref]

Microsc Res Tech. (1)

E. Di Fabrizio, D. Cojoc, V. Emiliani, S. Cabrini, M. Coppey-Moisan, E. Ferrari, V. Garbin, and M. Altissimo, “Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime,” Microsc Res Tech. 65, 252–262 (2004).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Exp. (1)

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Exp. 17, 10774–10781 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Rev. (1)

Y. Hayasaki, M. Itoh, T. Yatagai, and N. Nishida, “Nonmechanical optical manipulation of microparticle using spatial light modulator,” Opt. Rev. 6, 24–27 (1999).
[Crossref]

Optik (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–246 (1972).

Proc. SPIE (1)

F. Yaras and L. Onural, “Color Holographic Reconstruction Using Multiple SLMs and LED Illumination,” Proc. SPIE 7237, 72370O1 (2009).

Other (6)

D. Faklis and G. M. Morris, “Polychromatic diffractive lenses,” U.S. patent 5,589,982 (31 December 1996).

B. Kress and P. Meyrueis, Digital Diffractive Optics (Wiley, 2000).

Image by courtesy of Mike Vogt, URL: http://myfly-fotografie.de/ .

A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Combined holographic optical trapping and optical image processing using a single diffractive pattern displayed on a spatial light modulator,” Opt. Lett., accepted (2014).

E. Buckley, “70.2: Invited paper: holographic laser projection technology,” in SID Symposium Digest of Technical Papers (Society for Information Display, 2008), 39, 1074–1079.

D. G. Grier and S.-H. Lee, “Multi-color holographic optical traps,” U.S. patent 7,759,020B2 (20 Jul 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup for DP projection. Light from either a monochromator, or alternatively, a three-color RGB light source, passes through a multimode fiber and is collimated by a set of achromatic lenses (L1 and L2). The light passes through a linear polariser (Pol1) to the surface of a reflective, phase-only SLM. The light diffracted off the SLM is focused with lens L3 (f=100 mm) on a CMOS camera chip for the reconstruction of Fourier DPs. For Fresnel DPs the lens L3 is removed and image focussing is performed directly by the SLM.

Fig. 2
Fig. 2

Upper images: Experimentally recorded images of a Fourier DP at different readout wavelengths. The DP was calculated to reconstruct the letter ”B” at 430 nm, and the letter ”R” at 520 nm (images close to this wavelengths are indicated by a yellow frame). All images are normalized by their average intensity and plotted using the same color scale (colorbar on top). The lower graph (left) shows the experimentally measured relative efficiencies of the respective images (blue: efficiency of ”B”, red: efficiency of ”R”) as a function of the readout wavelength. The right graph shows the numerically calculated expected efficiencies.

Fig. 3
Fig. 3

Same data evaluation as in Fig. 2, but now for a three-color multi-level DP. Upper images: Experimentally recorded images of a Fourier DP intended to reconstruct the letter ”B” at 410 nm, the letter ”G” at 510 nm, and the letter ”R” at 630 nm. All images are normalized by their average intensities and plotted using the same color scale (colorbar on top). The lower graph (left) shows the experimentally measured relative efficiencies of the respective images (blue: efficiency of ”B”; green: efficiency of ”G”; red: efficiency of ”R”) as a function of the readout wavelength. The right graph shows the numerically calculated expected efficiencies.

Fig. 4
Fig. 4

Left: White image of the letter ”R” projected by a three-color, multi-level Fresnel DP displayed at an SLM. The programmed reconstruction distance was 30 cm. The SLM was illuminated with a three-color light source. In the central white ”R”, the three color channels blue, red, and green are superposed. The coloured versions of the letter at the sides arise from diffraction of the reconstructed image at a superposed cross-grating structure, which is due to the pixelation of the SLM. Right: Another reconstructed multi-level Fresnel DP of a coloured test image, produced and recorded like the example at the left.

Fig. 5
Fig. 5

Full color images holographically projected by multi-level DPs displayed at an SLM. The left column shows the master of the test image [33]. The middle column shows the image projected by the corresponding multi-level Fourier DP, with imaging lens L3 inserted, whereas the right column shows the reconstructed Fresnel DP, i.e. without lens L3. There the focusing is done by the DP itself.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( U , λ ) = 2 π d λ n ( U , λ ) .
Δ i ( U k ) = D i ϕ i ( U k ) 2 π round [ D i ϕ i ( U k ) 2 π ] .
V ( U k ) = i = 1 N Δ i 2 ( U k ) .
φ Lens , rgb = π r 2 f λ rgb ,

Metrics