Abstract

We theoretically and experimentally investigate a time-domain digital pre-equalization (DPEQ) scheme for bandwidth-limited optical coherent communication systems, which is based on feedback of channel characteristics from the receiver-side blind and adaptive equalizers, such as least-mean-squares (LMS) algorithm and constant or multi- modulus algorithms (CMA, MMA). Based on the proposed DPEQ scheme, we theoretically and experimentally study its performance in terms of various channel conditions as well as resolutions for channel estimation, such as filtering bandwidth, taps length, and OSNR. Using a high speed 64-GSa/s DAC in cooperation with the proposed DPEQ technique, we successfully synthesized band-limited 40-Gbaud signals in modulation formats of polarization-diversion multiplexed (PDM) quadrature phase shift keying (QPSK), 8-quadrature amplitude modulation (QAM) and 16-QAM, and significant improvement in both back-to-back and transmission BER performances are also demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust 9-QAM digital recovery for spectrum shaped coherent QPSK signal

Bo Huang, Junwen Zhang, Jianjun Yu, Ze Dong, Xinying Li, Haiyan Ou, Nan Chi, and Wen Liu
Opt. Express 21(6) 7216-7221 (2013)

Sub-symbol-rate sampling for PDM-QPSK signals in super-Nyquist WDM systems using quadrature poly-binary shaping

Cheng Xu, Guanjun Gao, Sai Chen, Jie Zhang, Ming Luo, Rong Hu, and Qi Yang
Opt. Express 24(23) 26678-26686 (2016)

Improved two-stage equalization for coherent Pol-Mux QPSK and 16-QAM systems

Chen Zhu, An V. Tran, Simin Chen, Liang B. Du, Trevor Anderson, Arthur J. Lowery, and Efstratios Skafidas
Opt. Express 20(26) B141-B150 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. Sinkin, Y. Sun, A. Pilipetskii, and D. Foursa, “Transmission over 9,100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” in Proc. OFC (2014), Postdeadline Papers, paper Th5B.4.
    [Crossref]
  2. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  3. Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
    [Crossref] [PubMed]
  4. J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
    [Crossref]
  5. Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM Grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
    [Crossref]
  6. Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 128-Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200-km SMF-28 with SE of 7.47 b/s/Hz,” J. Lightwave Technol. 30(24), 4000–4005 (2012).
    [Crossref]
  7. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
    [Crossref]
  8. X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Proc. OFC (2011), paper PDPB3.
    [Crossref]
  9. D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
    [Crossref]
  10. T. Sugihara, T. Kobayashi, Y. Konishi, S. Hirano, K. Tsutsumi, K. Yamagishi, T. Ichikawa, S. Inoue, K. Kubo, Y. Takahashi, K. Goto, T. Fujimori, K. Uto, T. Yoshida, K. Sawada, S. Kametani, H. Bessho, T. Inoue, K. Koguchi, K. Shimizu, and T. Mizuochi, “43 Gb/s DQPSK pre-equalization employing 6-bit, 43 GS/s DAC integrated LSI for cascaded ROADM filtering,” in Proc. OFC (2010), Paper PDPB6.
    [Crossref]
  11. D. L. Hershberger, “Full channel adaptive equalization for DTV transmitters,” in The Broadcast Engineering Conf. Proc. of the NAB (2002), 223–230.
  12. E. Coersmeier and E. Zielinski, “Adaptive pre-equalization in analog heterodyne architectures for wireless LAN,” in Conf. Proc. of the IEEE RAWCON (2002), T2.3, 107–110.
    [Crossref]
  13. Data Over Cable Service Interface Specification (DOCSIS), Proactive Network Maintenance Using Pre-equalization (2011), http://www.cablelabs.com/wp-content/uploads/specdocs/CM-GL-PNMP-V01-100415.pdf
  14. E. Coersmeier and E. Zielinski, “Comparison between different adaptive pre-equalization approaches for wireless LAN,” in Conf. Proc. of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2002), 1136–1140.
    [Crossref]
  15. J. Pan, P. Isautier, and S. E. Ralph, “Digital pre-shaping for narrowband filtering impairment compensation in superchannel applications,” in Proc. of Advanced Photonics (2013), paper JT3A.1.
  16. J. Zhang and H. Chien, “A novel adaptive digital pre-equalization scheme for bandwidth limited optical coherent system with DAC for signal generation,” in Proc. OFC (2014), paper W3K.4.
    [Crossref]
  17. J. Zhang, H. Chien, Z. Dong, and J. Xiao, “Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550km SMF-28 using adaptive pre-equalization,” in Proc. OFC (2014), paper Th4F.6.
    [Crossref]
  18. J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
    [Crossref]
  19. D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
    [Crossref]
  20. C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
    [Crossref]
  21. S. U. H. Qureshi, “Adaptive EQUALIZATION,” Proc. IEEE 73(9), 1349–1387 (1985).
    [Crossref]
  22. J. G. Proakis, Digital Communications IV (McGraw Hill, 2001).
  23. S. Haykin, Adaptive Filter Theory IV (Prentice Hall, 2001).
  24. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  25. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]
  26. X. Zhou, J. Yu, and P. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Proc. OFC (2009), paper OWG3.
  27. N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
    [Crossref]
  28. N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
    [Crossref]
  29. N. Alic, “Advances in MLSD-Equalized Incoherent Transmission,” in Proc. of OFC (2010), paper OThT1.
  30. J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
    [Crossref]
  31. J. Zhang, Z. Dong, H.-C. Chien, Z. Jia, Y. Xia, and Y. Chen, “Transmission of 20× 440-Gb/s super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” in Proc. OFC (2014), Postdeadline Papers, Th5B. 3.

2014 (1)

2012 (3)

2011 (3)

2010 (1)

2009 (2)

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

2008 (1)

2002 (1)

J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
[Crossref]

1998 (1)

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

1985 (1)

S. U. H. Qureshi, “Adaptive EQUALIZATION,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

1980 (1)

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[Crossref]

Alic, N.

N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[Crossref]

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

Andrekson, P. A.

N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[Crossref]

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

Behm, J. D.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Birk, M.

Borel, P. I.

Borowiec, A.

Bosco, G.

Brown, D. R.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Carena, A.

Cartledge, J. C.

Casas, R. A.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Chi, N.

Curri, V.

Dong, Z.

Dumont, G. A.

J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
[Crossref]

Endres, T. J.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Fatadin, I.

Forghieri, F.

Gao, Y.

Godard, D.

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[Crossref]

Hoshida, T.

Huang, M.-F.

Ives, D.

Johnson, C. R.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Karar, A. S.

Karlsson, M.

N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[Crossref]

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

Laperle, C.

Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

Li, C.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

Li, J.

Li, X.

Lingle, R.

Magill, P.

Mak, G.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

McGhan, D.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

Milenkovic, O.

Nelson, L.

O’Sullivan, M.

Y. Gao, J. C. Cartledge, A. S. Karar, S. S.-H. Yam, M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Reducing the complexity of perturbation based nonlinearity pre-compensation using symmetric EDC and pulse shaping,” Opt. Express 22(2), 1209–1219 (2014).
[Crossref] [PubMed]

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

Pan, Z.

Peckham, D. W.

Poggiolini, P.

Qureshi, S. U. H.

S. U. H. Qureshi, “Adaptive EQUALIZATION,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

Radic, S.

N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[Crossref]

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

Rasmussen, J. C.

Roberts, K.

Savchenko, A.

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

Savory, S. J.

Schniter, P.

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

Shao, Y.

Skold, M.

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

Sköld, M.

Tao, Z.

Wang, J.

Wang, T.

Werner, J.-J.

J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
[Crossref]

Xie, C.

Yam, S. S.-H.

Yan, W.

Yang, J.

J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
[Crossref]

Yu, J.

Zhang, H.

Zhou, X.

Zhu, B.

IEEE J. Sel. Areas Commun. (1)

J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind equalization and its generalized algorithms,” IEEE J. Sel. Areas Commun. 20(5), 997–1015 (2002).
[Crossref]

IEEE Photon. Technol. Lett. (1)

N. Alic, M. Skold, P. A. Andrekson, M. Karlsson, and S. Radic, “Benefits of joint statistics in MLSD-equalized transmission,” IEEE Photon. Technol. Lett. 21(8), 495–497 (2009).
[Crossref]

IEEE Trans. Commun. (1)

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[Crossref]

J. Lightwave Technol. (8)

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

J. Wang, C. Xie, and Z. Pan, “Generation of spectrally efficient Nyquist-WDM QPSK signals using digital FIR or FDE filters at transmitters,” J. Lightwave Technol. 30(23), 3679–3686 (2012).
[Crossref]

Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 144-Gb/s Nyquist-WDM PDM-64QAM generation and transmission on a 12-GHz WDM Grid equipped with Nyquist-band pre-equalization,” J. Lightwave Technol. 30(23), 3687–3692 (2012).
[Crossref]

Z. Dong, X. Li, J. Yu, and N. Chi, “6 × 128-Gb/s Nyquist-WDM PDM-16QAM generation and transmission over 1200-km SMF-28 with SE of 7.47 b/s/Hz,” J. Lightwave Technol. 30(24), 4000–4005 (2012).
[Crossref]

X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P. I. Borel, D. W. Peckham, R. Lingle, and B. Zhu, “64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing,” J. Lightwave Technol. 29(4), 571–577 (2011).
[Crossref]

N. Alic, M. Karlsson, M. Sköld, O. Milenkovic, P. A. Andrekson, and S. Radic, “Joint statistics and MLSD in filtered incoherent high-speed fiber-optic communications,” J. Lightwave Technol. 28(10), 1564–1572 (2010).
[Crossref]

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

J. Li, Z. Tao, H. Zhang, W. Yan, T. Hoshida, and J. C. Rasmussen, “Spectrally efficient quadrature duobinary coherent systems with symbol-rate digital signal processing,” J. Lightwave Technol. 29(8), 1098–1104 (2011).
[Crossref]

Opt. Express (2)

Proc. IEEE (2)

C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and R. A. Casas, “Blind equalization using the constant modulus criterion: a review,” Proc. IEEE 86(10), 1927–1950 (1998).
[Crossref]

S. U. H. Qureshi, “Adaptive EQUALIZATION,” Proc. IEEE 73(9), 1349–1387 (1985).
[Crossref]

Other (16)

J. G. Proakis, Digital Communications IV (McGraw Hill, 2001).

S. Haykin, Adaptive Filter Theory IV (Prentice Hall, 2001).

J. Cai, H. Zhang, H. G. Batshon, M. Mazurczyk, O. Sinkin, Y. Sun, A. Pilipetskii, and D. Foursa, “Transmission over 9,100 km with a capacity of 49.3 Tb/s using variable spectral efficiency 16 QAM based coded modulation,” in Proc. OFC (2014), Postdeadline Papers, paper Th5B.4.
[Crossref]

X. Zhou, L. E. Nelson, P. Magill, B. Zhu, and D. W. Peckham, “8x450-Gb/s,50-GHz-spaced,PDM-32QAM transmission over 400km and one 50GHz-grid ROADM,” in Proc. OFC (2011), paper PDPB3.
[Crossref]

D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mak, and M. O’Sullivan, “5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation,” in Proc. OFC (2005), PDP27.
[Crossref]

T. Sugihara, T. Kobayashi, Y. Konishi, S. Hirano, K. Tsutsumi, K. Yamagishi, T. Ichikawa, S. Inoue, K. Kubo, Y. Takahashi, K. Goto, T. Fujimori, K. Uto, T. Yoshida, K. Sawada, S. Kametani, H. Bessho, T. Inoue, K. Koguchi, K. Shimizu, and T. Mizuochi, “43 Gb/s DQPSK pre-equalization employing 6-bit, 43 GS/s DAC integrated LSI for cascaded ROADM filtering,” in Proc. OFC (2010), Paper PDPB6.
[Crossref]

D. L. Hershberger, “Full channel adaptive equalization for DTV transmitters,” in The Broadcast Engineering Conf. Proc. of the NAB (2002), 223–230.

E. Coersmeier and E. Zielinski, “Adaptive pre-equalization in analog heterodyne architectures for wireless LAN,” in Conf. Proc. of the IEEE RAWCON (2002), T2.3, 107–110.
[Crossref]

Data Over Cable Service Interface Specification (DOCSIS), Proactive Network Maintenance Using Pre-equalization (2011), http://www.cablelabs.com/wp-content/uploads/specdocs/CM-GL-PNMP-V01-100415.pdf

E. Coersmeier and E. Zielinski, “Comparison between different adaptive pre-equalization approaches for wireless LAN,” in Conf. Proc. of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (2002), 1136–1140.
[Crossref]

J. Pan, P. Isautier, and S. E. Ralph, “Digital pre-shaping for narrowband filtering impairment compensation in superchannel applications,” in Proc. of Advanced Photonics (2013), paper JT3A.1.

J. Zhang and H. Chien, “A novel adaptive digital pre-equalization scheme for bandwidth limited optical coherent system with DAC for signal generation,” in Proc. OFC (2014), paper W3K.4.
[Crossref]

J. Zhang, H. Chien, Z. Dong, and J. Xiao, “Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550km SMF-28 using adaptive pre-equalization,” in Proc. OFC (2014), paper Th4F.6.
[Crossref]

J. Zhang, Z. Dong, H.-C. Chien, Z. Jia, Y. Xia, and Y. Chen, “Transmission of 20× 440-Gb/s super-Nyquist-filtered signals over 3600 km based on single-carrier 110-GBaud PDM QPSK with 100-GHz grid,” in Proc. OFC (2014), Postdeadline Papers, Th5B. 3.

X. Zhou, J. Yu, and P. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Proc. OFC (2009), paper OWG3.

N. Alic, “Advances in MLSD-Equalized Incoherent Transmission,” in Proc. of OFC (2010), paper OThT1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 The principle of the proposed pre-equalization by leveraging the inverse channel information given by the receiver-side adaptive equalizer.
Fig. 2
Fig. 2 The principle of channel estimation for the adaptive pre-equalization based on DD-LMS.
Fig. 3
Fig. 3 Simulation system setup for the digital pre-equalization based on receiver-side adaptive equalizer in optical coherent system.
Fig. 4
Fig. 4 (a) The frequency response of LPF; (b) the frequency response of DD-LMS taps and regenerated FIR with the ideal channel inverse; (c) and (d) are the magnitude and phase frequency response of DD-LMS taps.
Fig. 5
Fig. 5 The signal spectrum of (a) ideal 32GBaud QPSK signal without bandwidth limitation, (b) the 32GBaud QPSK signal under 7-GHz LPF; (c) the 32GBaud QPSK signal with pre-equalization before the 7-GHz LPF, (d) the 32GBaud signal with pre-equalization after the 7-GHz LPF.
Fig. 6
Fig. 6 (a)The BER results of 32-GBaud PDM-QPSK signal versus the OSNR with and without DPEQ under different filtering bandwidth. Insets (i) and (ii) show the eye diagrams of signal without and with Pre-EQ for 7-GHz EBW filtering at the OSNR of 16 dB; (b)The OSNR penalty at BER of 1 × 10−2 for 32-GBaud PDM-QPSK signal without and with DPEQ under different filtering bandwidth. Inset (i) is the estimated channel inverse by DD-LMS under different filtering bandwidth.
Fig. 7
Fig. 7 The frequency response of DD-LMS taps compared with the ideal channel inverse for different tap length: (a) 5 taps, (b) 9 taps, (c) 13 taps and (d) 21 taps; (e) The BER at OSNR of 14dB for DPEQ based on different adaptive filter tap length under 6, 7 and 9-GHz channel filtering.
Fig. 8
Fig. 8 (a)The frequency response of generated FIR based on DD-LMS under different OSNR for channel estimation, compared with ideal channel inverse. (b) The BER performance of DPEQ based on channel estimation under different OSNR for different channel filtering bandwidth. The BER of 32-GBaud PDM-QPSK signal with DPEQ is measured at OSNR of 14dB.
Fig. 9
Fig. 9 The signal spectrum of (a) 32GBaud Nyquist-QPSK signal without bandwidth limitation, (b) the 32GBaud Nuyqist-QPSK signal under 7-GHz LPF; (c) the 32GBaud Nuqist-QPSK signal with pre-equalization before the 7-GHz LPF, (d) the 32GBaud Nyquist signal with pre-equalization after the 7-GHz LPF.
Fig. 10
Fig. 10 (a) the frequency response of DD-LMS taps with the ideal channel inverse in Nyquist spectrum shaping case; (b) the BTB BER results versus the OSNR for Nyquist spectrum shaped signal in single channel and N-WDM cases using different processing method; (c) the BER results for WDM signals under 7-GHz and 9-GHz narrow filtering with different carrier spacing.
Fig. 11
Fig. 11 The experiment setup for the 8 channels 40-Gbaud QPSK/8QAM/16QAM generation with the adaptive pre-equalization and WDM transmission.
Fig. 12
Fig. 12 The frequency response of (a) Hxx and (b) regenerated FIR.
Fig. 13
Fig. 13 The BTB BER results versus the OSNR with and without pre-equalization for (a)40-GBaud PDM-QPSK, (b)40-GBaud PDM-8QAM and (c) 40GBaud PDM-16QAM signals.
Fig. 14
Fig. 14 (a) The BTB BER versus the taps length; (b)The BER of WDM PM-QPSK, 8QAM, and 16QAM signals without and with pre-equalization versus the transmission distance.
Fig. 15
Fig. 15 The FFT spectrum after ADC for 40-GBaud Nyquist QPSK signal (a) without and (b) with DPEQ; (c) The BER performance of 40-GBaud Nyquist QPSK signals in SC and N-WDM cases without and with DPEQ.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Y(t)=X(t)*H(t)+n(t)
Z(t)=Y(t)*Q(t)=X(t)*H(t)*Q(t)+n(t)*Q(t),
Z(t)X(t)*H(t)*Q(t)
Z(t)=X(kT)* X N (t),
Q(t)H (t) 1 * X N (t)
Q(f)1/H(f) |f|<1/2T
Q(f)=F[H(f), N 0 ,L],
Q (f) MMSE =1/( N 0 +H(f)) |f|<1/2T
MS E min_posteq =T f/2 f/2 N 0 /[ N 0 +H(f)]df
MS E min_Preeq =T f/2 f/2 N 0 /[ N 0 +1]df

Metrics