Abstract

The generation of Nyquist pulses with a dual parallel Mach-Zehnder modulator (DPMZM) driven by a single RF signal is demonstrated theoretically and experimentally. A complete theoretical analysis is developed and the limitation of the proposed scheme is also discussed. It is theoretically proved that Nyquist pulses with a spectrum of 5 flat comb lines can be generated using a single DPMZM, which is also verified with simulation. 7 flat comb lines in frequency domain can also be obtained if a large RF driving voltage is applied to DPMZM but the generated waveforms won’t present a sinc-shape. This scheme is further investigated experimentally. 40 GHz Nyquist pulses with full-width-at-half-maximum (FWHM) less than 4.65 ps, signal-to-noise ratio (SNR) better than 29.5 dB, and normalized root-mean-square error (NRMSE) less than 2.4% are generated. It is found that a tradeoff exists between the insertion loss of the DPMZM and the deviation of generated pulses. The tunability of repetition rate is experimentally verified by generation of 1 GHz to 40 GHz Nyquist pulses with SNR better than 28.4 dB and NRMSE less than 6.15%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of binary and quaternary phase-coded microwave signals by utilizing a dual-polarization dual-parallel Mach-Zehnder modulator

Peng Li, Lianshan Yan, Jia Ye, Yan Pan, Wei Pan, Bin Luo, Xihua Zou, Tao Zhou, Zhiyu Chen, and Maowen Wang
Opt. Express 26(21) 28013-28021 (2018)

Optical Nyquist pulse generation using a time lens with spectral slicing

Dong Wang, Li Huo, Yanfei Xing, Xiangyu Jiang, and Caiyun Lou
Opt. Express 23(4) 4329-4339 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  2. H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe, “320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT,” Opt. Express 22(1), 110–118 (2014).
    [Crossref] [PubMed]
  3. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
    [Crossref]
  4. T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
    [Crossref] [PubMed]
  5. R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
    [Crossref] [PubMed]
  6. T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20(18), 19836–19849 (2012).
    [Crossref] [PubMed]
  7. D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
    [Crossref]
  8. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  9. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  10. H. Hu, F. Ye, A. Medhin, P. Guan, H. Takara, Y. Miyamoto, H. Mulvad, M. Galili, T. Morioka, and L. Oxenlowe, “Single source 5-dimensional (space-, wavelength-, time-, polarization-, quadrature-) 43 Tbit/s data transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh5B.10.
    [Crossref]
  11. R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
    [Crossref] [PubMed]
  12. R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation - which performs better with limited resources?” Opt. Express 20(26), B543–B551 (2012).
    [Crossref] [PubMed]
  13. R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the over sampling factor to 1.33,” in Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTu2I.1.
  14. A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
    [Crossref] [PubMed]
  15. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM4G.3.
    [Crossref]
  16. M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
  17. L. Yan, W. Jian, J. Yu, K. Deming, L. Wei, H. Xiaobin, G. Hongxiang, Z. Yong, and L. Jintong, “Generation and performance Investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM,” Opt. Express 20(22), 24754–24760 (2012).
    [Crossref] [PubMed]
  18. N. Wang, Y. Li, Y. Ji, N. Shu, J. Wu, and J. Lin, “Generation of ultra-flat optical frequency comb using cascaded DPMZMs,” Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper AW4E.1.
    [Crossref]
  19. Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Cost-effective optical Nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder modulators,” in Optical Fiber Communications Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W1G.5.
    [Crossref]
  20. Q. Wang, L. Huo, Y. Xing, and B. Zhou, “Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator,” Opt. Lett. 39(10), 3050–3053 (2014).
    [Crossref] [PubMed]
  21. J. Zang, J. Wu, Y. Li, X. Nie, J. Qiu, and J. Lin, “Generation of Nyquist pulses using a dual parallel Mach-Zehnder modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW1J.1.
    [Crossref]

2014 (2)

2013 (1)

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

2012 (9)

L. Yan, W. Jian, J. Yu, K. Deming, L. Wei, H. Xiaobin, G. Hongxiang, Z. Yong, and L. Jintong, “Generation and performance Investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM,” Opt. Express 20(22), 24754–24760 (2012).
[Crossref] [PubMed]

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[Crossref] [PubMed]

T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20(18), 19836–19849 (2012).
[Crossref] [PubMed]

D. Hillerkuss, R. Schmogrow, M. Meyer, S. Wolf, M. Jordan, P. Kleinow, N. Lindenmann, P. C. Schindler, A. Melikyan, X. Yang, S. Ben-Ezra, B. Nebendahl, M. Dreschmann, J. Meyer, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, L. Altenhain, T. Ellermeyer, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Single-laser 32.5 Tbit/s Nyquist WDM transmission,” J. Opt. Commun. Netw. 4(10), 715–723 (2012).
[Crossref]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[Crossref] [PubMed]

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation - which performs better with limited resources?” Opt. Express 20(26), B543–B551 (2012).
[Crossref] [PubMed]

A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Alem, M.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

Altenhain, L.

Baeuerle, B.

Bäuerle, B.

Bayvel, P.

Becker, J.

Ben-Ezra, S.

Bosco, G.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Bouziane, R.

Brès, C. S.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
[Crossref] [PubMed]

Carena, A.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Curri, V.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Deming, K.

Dippon, T.

Dreschmann, M.

Ellermeyer, T.

Forghieri, F.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Freude, W.

Galili, M.

Guan, P.

Hillerkuss, D.

Hirooka, T.

Hongxiang, G.

Hu, H.

Huebner, M.

Huo, L.

Jian, W.

Jintong, L.

Jordan, M.

Killey, R. I.

Kleinow, P.

Kong, D.

Koos, C.

Leuthold, J.

Lindenmann, N.

Ludwig, A.

Melikyan, A.

Meyer, J.

Meyer, M.

Milder, P. A.

Moeller, M.

Mulvad, H. C. H.

Nakazawa, M.

Nebendahl, B.

Oehler, A.

Oxenløwe, L. K.

Palushani, E.

Parmigiani, F.

Petropoulos, P.

Poggiolini, P.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM Terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Resan, B.

Ruan, P.

Schindler, P. C.

Schmogrow, R.

Schneider, T.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

Shoaie, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
[Crossref] [PubMed]

Soto, M. A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

Thévenaz, L.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

Vedadi, A.

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
[Crossref] [PubMed]

Wang, Q.

Wei, L.

Weingarten, K.

Winter, M.

Wolf, S.

Xiaobin, H.

Xing, Y.

Yan, L.

Yang, X.

Yong, Z.

Yu, J.

Zhou, B.

IEEE Photon. Technol. Lett. (1)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (1)

Nat. Commun. (1)

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).

Opt. Express (9)

L. Yan, W. Jian, J. Yu, K. Deming, L. Wei, H. Xiaobin, G. Hongxiang, Z. Yong, and L. Jintong, “Generation and performance Investigation of 40GHz phase stable and pulse width-tunable optical time window based on a DPMZM,” Opt. Express 20(22), 24754–24760 (2012).
[Crossref] [PubMed]

A. Vedadi, M. A. Shoaie, and C. S. Brès, “Near-Nyquist optical pulse generation with fiber optical parametric amplification,” Opt. Express 20(26), B558–B565 (2012).
[Crossref] [PubMed]

R. Schmogrow, D. Hillerkuss, S. Wolf, B. Bäuerle, M. Winter, P. Kleinow, B. Nebendahl, T. Dippon, P. C. Schindler, C. Koos, W. Freude, and J. Leuthold, “512QAM Nyquist sinc-pulse transmission at 54 Gbit/s in an optical bandwidth of 3 GHz,” Opt. Express 20(6), 6439–6447 (2012).
[Crossref] [PubMed]

R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P. Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse generation - which performs better with limited resources?” Opt. Express 20(26), B543–B551 (2012).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

H. Hu, D. Kong, E. Palushani, M. Galili, H. C. H. Mulvad, and L. K. Oxenløwe, “320 Gb/s Nyquist OTDM received by polarization-insensitive time-domain OFT,” Opt. Express 22(1), 110–118 (2014).
[Crossref] [PubMed]

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig, B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its relation to OFDM,” Opt. Express 20(1), 317–337 (2012).
[Crossref] [PubMed]

T. Hirooka and M. Nakazawa, “Linear and nonlinear propagation of optical Nyquist pulses in fibers,” Opt. Express 20(18), 19836–19849 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (7)

J. Zang, J. Wu, Y. Li, X. Nie, J. Qiu, and J. Lin, “Generation of Nyquist pulses using a dual parallel Mach-Zehnder modulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper SW1J.1.
[Crossref]

M. A. Soto, M. Alem, M. A. Shoaie, A. Vedadi, C. S. Brès, L. Thévenaz, and T. Schneider, “Generation of Nyquist sinc pulses using intensity modulators,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CM4G.3.
[Crossref]

N. Wang, Y. Li, Y. Ji, N. Shu, J. Wu, and J. Lin, “Generation of ultra-flat optical frequency comb using cascaded DPMZMs,” Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2013), paper AW4E.1.
[Crossref]

Q. Wang, L. Huo, Y. Xing, C. Lou, and B. Zhou, “Cost-effective optical Nyquist pulse generator with ultra-flat optical spectrum using dual-parallel Mach-Zehnder modulators,” in Optical Fiber Communications Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper W1G.5.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sørensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenløwe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s real-time Nyquist pulse generation by reducing the over sampling factor to 1.33,” in Optical Fiber Communications Conference, OSA Technical Digest (CD) (Optical Society of America, 2013), paper OTu2I.1.

H. Hu, F. Ye, A. Medhin, P. Guan, H. Takara, Y. Miyamoto, H. Mulvad, M. Galili, T. Morioka, and L. Oxenlowe, “Single source 5-dimensional (space-, wavelength-, time-, polarization-, quadrature-) 43 Tbit/s data transmission of 6 SDM × 6 WDM × 1.2 Tbit/s Nyquist-OTDM-PDM-QPSK,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper JTh5B.10.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed scheme: (a) experimental setup; (b)-(d) spectrums of the optical signal from child-MZM1, child-MZM2, and the DPMZM; (e) intensity (red line) and phase (blue line) of the generated Nyquist pulses.
Fig. 2
Fig. 2 (a) The relationship between V DC1 and V pp when the1st-order and 2nd-order sidebands have the same amplitude; (b) intensity difference between1st sidebands and other sidebands when Eq. (9) is satisfied; (c) the suppression ratio of 3rd-order and 4th-order sidebands compared with 1st-order sidebands; (d) V DC1 dependence on V pp of RF driving signal.
Fig. 3
Fig. 3 The simulation results: (a) waveforms of the generated Nyquist pulses; (b) nomalized waveforms, the ideal Nyquist pulse train is also shown for comparison; (c) optical spectrum of the generated Nyquist pulses when V pp =1.4 V π .
Fig. 4
Fig. 4 The experimental results: the generated waveforms and corresponding spectrums when the RF voltage is set at 0.8 V π (a), 1.4 V π (b), and 2.0 V π (c) respectively; (d) the OSO-measured SNR and FWHM at different RF driving voltages.
Fig. 5
Fig. 5 (a) the normalized waveforms of the generated pulses and ideal Nyquist one; (b) the NRMSE of the generated Nyquist pulses and insertion loss of DPMZM.
Fig. 6
Fig. 6 The spectrums and waveforms of the generated Nyquist pulses at repetition rate of 1 GHz (a), 5 GHz (b), 10 GHz (c), 20 GHz (d), 30 GHz (e) and 40 GHz (f) respectively.

Tables (1)

Tables Icon

Table 1 SNR, NRMSE, UMSR, FWHM of the generated Nyquist pulses at different repetition rate

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E out = E in e jπ 2 { cos[ π V 0 2 V π sin( 2πft )+ π V DC1 2 V π ]+cos( π V DC2 2 V π ) e j π V DC3 V π }
E 0 = E in e jπ 2 [ cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π ]
E +1 = E in e jπ 2 sinA J 1 ( B ) e j( ωt+ π 2 )
E 1 = E in e jπ 2 sinA J 1 ( B ) e j( ωt+ π 2 )
E +2 = E in e jπ 2 cosA J 2 ( B ) e j2ωt
E 2 = E in e jπ 2 cosA J 2 ( B ) e j2ωt
E +3 = E in e jπ 2 sinA J 3 ( B ) e j( 3ωt+ π 2 )
E 3 = E in e jπ 2 sinA J 3 ( B ) e j( 3ωt+ π 2 )
E in 2 sinA J 1 ( B )= E in 2 cosA J 2 ( B )=U
V DC1 = 2 V π π arctan[ J 2 ( B )/ J 1 ( B ) ]
E out = E in e jπ 2 { [ cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π ]+sinA J 1 ( B ) e j( ωt+ π 2 ) +sinA J 1 ( B ) e j( ωt+ π 2 ) +cosA J 2 ( B ) e j2ωt +cosA J 2 ( B ) e j2ωt }
E in 2 [ cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π ]=U
E out =U e jπ [ 1+ e j( ωt+ π 2 ) + e j( ωt+ π 2 ) + e j2ωt + e j2ωt ]
E out =5U sin[ 5( πft+ 3π 4 ) ] 5sin( πft+ 3π 4 )
cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π =sinA J 1 ( B )
V DC3 =( 2N+1 ) V π , V DC2 = 2 V π π { ±arccos[ sinA J 1 ( B )+cosA J 0 ( B ) ] }
V DC3 =2N V π , V DC2 = 2 V π π { ±arccos[ sinA J 1 ( B )cosA J 0 ( B ) ] }
E out = E in e jπ 2 { [ cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π ]+sinA J 1 ( B ) e j( ωt+ π 2 ) +sinA J 1 ( B ) e j( ωt+ π 2 ) +cosA J 2 (B) e j2ωt +cosA J 2 ( B ) e j2ωt +sinA J 3 ( B ) e j( 3ωt+ π 2 ) +sinA J 3 ( B ) e j( 3ωt+ π 2 ) }
E in 2 sinA J 1 ( B )= E in 2 cosA J 2 ( B )= E in 2 sinA J 3 ( B )=V
E in 2 [ cosA J 0 ( B )+cos( π V DC2 2 V π ) e j π V DC3 V π ]=V e j φ c
E out =V{ e j( φ c +π ) +2cos[ 2( πft+ 3π 4 ) ]+2cos[ 4( πft+ 3π 4 ) ]2cos[ 6( πft+ 3π 4 ) ] }
E out =7V{ e j( φ c +π) 14cos[6(πft+ 3π 4 )] 7 + sin[7(πft+ 3π 4 )] 7sin[(πft+ 3π 4 )] }

Metrics