Abstract

We present a realistic numerical simulation of a source of number-squeezed photon states employing a cavity-based parametric downconversion (PDC) process. A cavity containing the PDC medium is pumped repeatedly. The cavity recycles only one of the PDC output modes, allowing it to be amplified with each subsequent pump pulse. A photon number resolved (PNR) measurement is made on the other PDC output mode following each pump pulse. Once the PNR measurements indicate that the target number of photons has accumulated in the cavity, the pumping is stopped and the resulting photon state is released. The photon number uncertainty in the resulting state is ~3 dB below that of a mean-equivalent coherent state and furthermore the probability of generating the target photon number is similarly increased.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
    [CrossRef]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
    [CrossRef] [PubMed]
  3. T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
    [CrossRef] [PubMed]
  4. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
    [CrossRef] [PubMed]
  5. P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
    [CrossRef]
  6. M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
    [CrossRef] [PubMed]
  7. A. Kuzmich and L. Mandel, “Sub-shot-noise interferometric measurements with two-photon states,” Quantum Semiclass. Opt. B 10(3), 493–500 (1998).
    [CrossRef]
  8. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
    [CrossRef] [PubMed]
  9. L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
    [CrossRef] [PubMed]
  10. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
    [CrossRef] [PubMed]
  11. B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
    [CrossRef] [PubMed]
  12. M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
    [CrossRef] [PubMed]
  13. M. Da Cunha Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett. 38(10), 1609–1611 (2013).
    [CrossRef] [PubMed]
  14. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
    [CrossRef] [PubMed]
  15. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv.org 1209.5774, 1–16 (2012).
  16. Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
    [CrossRef]
  17. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  18. P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
    [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, Cambridge University, 1995).
  20. P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
    [CrossRef] [PubMed]
  21. K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103(16), 163602 (2009).
    [CrossRef] [PubMed]
  22. H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
    [CrossRef]
  23. X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
    [CrossRef]

2013 (4)

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

M. Da Cunha Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett. 38(10), 1609–1611 (2013).
[CrossRef] [PubMed]

2011 (3)

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

2010 (2)

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
[CrossRef] [PubMed]

2009 (2)

L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
[CrossRef] [PubMed]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103(16), 163602 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

2006 (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
[CrossRef] [PubMed]

2001 (2)

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[CrossRef] [PubMed]

2000 (1)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

1998 (1)

A. Kuzmich and L. Mandel, “Sub-shot-noise interferometric measurements with two-photon states,” Quantum Semiclass. Opt. B 10(3), 493–500 (1998).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1981 (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[CrossRef]

Abrams, D. S.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Adamson, R. B. A.

L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
[CrossRef] [PubMed]

Afek, I.

I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
[CrossRef] [PubMed]

Altepeter, J. B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Ambar, O.

I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
[CrossRef] [PubMed]

Bao, X.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Becerra, F. E.

Bellei, F.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Bennink, R. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Berggren, K. K.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Beyer, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Boto, A. N.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Braunstein, S. L.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Brunner, N.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Calkins, B.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Caves, C. M.

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[CrossRef]

Chekhova, M. V.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[CrossRef] [PubMed]

Chen, S.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Chen, Z.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Christensen, B. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Chunnilall, C. J.

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

D’Angelo, M.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[CrossRef] [PubMed]

Da Cunha Pereira, M.

Dai, H.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Dane, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

De Fazio, D.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Deng, Y.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Dowling, J. P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Dunn, M. H.

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

Evans, P. G.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Fan, J.

Gerrits, T.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Gilchrist, A.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
[CrossRef] [PubMed]

Gisin, N.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Giustina, M.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Glebov, B. L.

Grice, W. P.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

He, Y.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Humble, T. S.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Ivry, Y.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Jennewein, T.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

Jiang, X.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Jin, X.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Kofler, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

Kok, P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich and L. Mandel, “Sub-shot-noise interferometric measurements with two-photon states,” Quantum Semiclass. Opt. B 10(3), 493–500 (1998).
[CrossRef]

Kwiat, P. G.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103(16), 163602 (2009).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Lim, C. C. W.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Lita, A. E.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
[CrossRef] [PubMed]

Ma, X. S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
[CrossRef] [PubMed]

Mandel, L.

A. Kuzmich and L. Mandel, “Sub-shot-noise interferometric measurements with two-photon states,” Quantum Semiclass. Opt. B 10(3), 493–500 (1998).
[CrossRef]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

McCaughan, A.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

McCusker, K. T.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103(16), 163602 (2009).
[CrossRef] [PubMed]

Mech, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Migdall, A.

Miller, A.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Miller, A. J.

Nagata, T.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

Najafi, F.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Nam, S. W.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

M. Da Cunha Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett. 38(10), 1609–1611 (2013).
[CrossRef] [PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16(5), 3032–3040 (2008).
[CrossRef] [PubMed]

O’brien, J. L.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Okamoto, R.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

Pan, G.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Pan, J.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Pregnell, K. L.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Prevedel, R.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Pryde, G. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Ramelow, S.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Resch, K. J.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Rui, J.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Sasaki, K.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

Schaake, J.

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shalm, L. K.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
[CrossRef] [PubMed]

Shih, Y.

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Silberberg, Y.

I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
[CrossRef] [PubMed]

Steinberg, A. M.

L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
[CrossRef] [PubMed]

Stothard, D. J. M.

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

Takeuchi, S.

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

Thomas, P. J.

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

Ursin, R.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Walsh, D. A.

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

Williams, C. P.

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Wittmann, B.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

Yang, F.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Yang, J.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Yang, S.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Yuan, Z.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Zeilinger, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Zhang, H.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Zhang, Y.

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

Zhao, B.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Zhao, Q.

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

Zhao, T.

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Zotter, S.

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, and K. K. Berggren, “Superconducting –nanowire single-photon-detector linear array,” Appl. Phys. Lett. 103(14), 142602 (2013).
[CrossRef]

J. Mod. Opt. (1)

P. J. Thomas, M. H. Dunn, D. J. M. Stothard, D. A. Walsh, and C. J. Chunnilall, “A pump enhanced source of telecom-band correlated photon pairs,” J. Mod. Opt. 58(8), 631–639 (2011).
[CrossRef]

Nat. Photon. (1)

H. Zhang, X. Jin, J. Yang, H. Dai, S. Yang, T. Zhao, J. Rui, Y. He, X. Jiang, F. Yang, G. Pan, Z. Yuan, Y. Deng, Z. Chen, X. Bao, S. Chen, B. Zhao, and J. Pan, “Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion,” Nat. Photon. 5(10), 628–632 (2011).
[CrossRef]

Nature (2)

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. E. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature 497(7448), 227–230 (2013).
[CrossRef] [PubMed]

L. K. Shalm, R. B. A. Adamson, and A. M. Steinberg, “Squeezing and over-squeezing of triphotons,” Nature 457(7225), 67–70 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

X. S. Ma, S. Zotter, J. Kofler, T. Jennewein, and A. Zeilinger, “Experimental generation of single photons via active multiplexing,” Phys. Rev. A 83(4), 043814 (2011).
[CrossRef]

P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L. Braunstein, and J. P. Dowling, “Quantum-interferometric optical lithography: toward arbitrary two-dimensional patterns,” Phys. Rev. A 63(6), 063407 (2001).
[CrossRef]

Phys. Rev. D Part. Fields (1)

C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D Part. Fields 23(8), 1693–1708 (1981).
[CrossRef]

Phys. Rev. Lett. (8)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96(1), 010401 (2006).
[CrossRef] [PubMed]

K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98(22), 223601 (2007).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. B. Altepeter, B. Calkins, T. Gerrits, A. E. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” Phys. Rev. Lett. 111(13), 130406 (2013).
[CrossRef] [PubMed]

M. D’Angelo, M. V. Chekhova, and Y. Shih, “Two-photon diffraction and quantum lithography,” Phys. Rev. Lett. 87(1), 013602 (2001).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake, “Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission,” Phys. Rev. Lett. 105(25), 253601 (2010).
[CrossRef] [PubMed]

K. T. McCusker and P. G. Kwiat, “Efficient optical quantum state engineering,” Phys. Rev. Lett. 103(16), 163602 (2009).
[CrossRef] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[CrossRef] [PubMed]

Quantum Semiclass. Opt. B (1)

A. Kuzmich and L. Mandel, “Sub-shot-noise interferometric measurements with two-photon states,” Quantum Semiclass. Opt. B 10(3), 493–500 (1998).
[CrossRef]

Science (2)

I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328(5980), 879–881 (2010).
[CrossRef] [PubMed]

T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316(5825), 726–729 (2007).
[CrossRef] [PubMed]

Other (2)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, Cambridge University, 1995).

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” arXiv.org 1209.5774, 1–16 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the proposed device. Mode a ^ is the storage and accumulation mode. Mode b ^ is the ancillary monitoring mode. The EOM-PBS in the pump path allows pump pulses to enter the cavity and modulates their power. The intra-cavity EOM-PBS releases the stored state upon reaching the goal number.

Fig. 2
Fig. 2

Statistical properties of a state produced by seeding a PDC process of gain χ with a Fock state containing N0 photons. (a) Expected number of new photons measured after a single pump cycle. (b) Standard deviation of the new photon numbers measured after a single pump cycle. (c) Expected number of pump cycles to have the first non-vacuum detection in mode b ^ .

Fig. 3
Fig. 3

Performance of the proposed scheme for a high-performance system (solid symbols), and a medium-performance system (open symbols). Fixed gain results (blue circles), and adaptive gain using genetic algorithm optimization (red squares). Shown for comparison: mean-equivalent Poisson distribution (black) and thermal distributions – mean-equivalent (solid grey) and power-equivalent (dashed grey). <cycles> is the expected number of pump cycles until Ngoal is measured on the output using a perfect PNRD.

Fig. 4
Fig. 4

Probability distribution produced by the proposed device. Ngoal = 4, (a) high-performance and (c) medium-performance, and Ngoal = 12, (b) high-performance and (d) medium-performance. Fixed-gain shown in blue and adaptive-gain in red. Included for comparison are what is possible with single-pass sources: shown are mean-equivalent Poisson distributions (black), thermal mean-equivalent (solid grey) and thermal power-equivalent (grey dashed) distributions.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ m = Tr c U ^ a + G ^ a,b + U ^ a Π ^ b (m) U ^ a + G ^ a,b + U ^ a |0 a,b 0| |0 a 0|
P b ( m )= Tr a G ^ a,b + Π ^ b (m) G ^ a,b |0 a,b 0|
P( N new N goal N tot ) P risk

Metrics