Abstract

We present a comprehensive analysis of the technique of Longitudinal-Mode-Filling (LMF) to reduce Stimulated Brillouin Scattering (SBS) limitations in Ytterbium Doped Fibre Amplifiers (YDFA), for the generation of nanosecond, temporally shaped pulses. A basic Master-Oscillator-Power-Amplifier (MOPA) system, comprising an output YDFA with 10µm-core active fibre, is experienced for benchmarking purposes. Input pulse-shaping is operated thanks to direct current modulation in highly multimode laser-diode seeds, either based on the use of Distributed Feed-Back (DFB) or of a Fibre Bragg Grating (FBG). These seeds enable wavelength control. We verify the effectiveness of the combination of LMF, with appropriate mode spacing, in combination with natural chirp effects from the seed to control the SBS threshold in a broad range of output energies, from a few to some tens of µJ. These variations are discussed versus all the parameters of the laser system. In accordance with the proposal of a couple of basic principles and with the addition of gain saturation effects along the active fibre, we develop a full-vectorial numerical model. Fine fits between experimental results and theoretical expectations are demonstrated. The only limitation of the technique arises from broadband beating noise, which is analysed thanks to a simplified, but fully representative description to discuss the signal-to-noise ratio of the amplified pulses. This provides efficient tools for application to the design of robust and cost-effective MOPAs, aiming to the generation of finely shaped and energetic nanosecond pulses without the need for any additional electro-optics.

© 2014 Optical Society of America

Full Article  |  PDF Article

Corrections

24 September 2019: A typographical correction was made to the author listing.


OSA Recommended Articles
Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping

Tao Chen, Hao Liu, Wei Kong, and Rong Shu
Opt. Express 24(18) 20963-20972 (2016)

SBS reduction in nanosecond fiber amplifiers by frequency chirping

Pavel I. Ionov and Todd S. Rose
Opt. Express 24(13) 13763-13777 (2016)

Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system

K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hickey, and M. N. Zervas
Opt. Express 14(23) 10996-11001 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
    [Crossref]
  2. L. Lago, D. Bigourd, A. Mussot, M. Douay, and E. Hugonnot, “High-energy temporally shaped nanosecond-pulse master-oscillator power amplifier based on ytterbium-doped single-mode microstructured flexible fiber,” Opt. Lett. 36(5), 734–736 (2011).
    [Crossref] [PubMed]
  3. F. Di Teodoro, J. Morais, T. S. McComb, M. K. Hemmat, E. C. Cheung, M. Weber, and R. Moyer, “SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier,” Opt. Lett. 38(13), 2162–2164 (2013).
    [Crossref] [PubMed]
  4. A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
    [Crossref]
  5. S. Hocquet, D. Penninckx, J.-F. Gleyze, C. Gouédard, and Y. Jaouën, “Non sinusoidal phase modulations for high-power laser performance control: stimulated Brillouin scattering and FM-to-AM conversion,” Appl. Opt. 49(7), 1104–1115 (2010).
    [Crossref] [PubMed]
  6. J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
    [Crossref] [PubMed]
  7. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [Crossref] [PubMed]
  8. A. Liu, “Suppressing stimulated Brillouin scattering in fiber amplifiers using non-uniform fiber and temperature gradient,” Opt. Express 15(3), 977–984 (2007).
    [Crossref] [PubMed]
  9. A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
    [Crossref] [PubMed]
  10. P. Weßels, P. Adel, M. Auerbach, D. Wandt, and C. Fallnich, “Novel suppression scheme for Brillouin scattering,” Opt. Express 12(19), 4443–4448 (2004).
    [Crossref] [PubMed]
  11. H. Lee and G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11(25), 3467–3472 (2003).
    [Crossref] [PubMed]
  12. X. Zhang, R. Wang, Y. Song, J. Wu, and A. K. Sarma, “Multi-channel broadband Brillouin slow light with multiple longitudinal mode pump,” J. Lightwave Technol. 30(1), 49–53 (2012).
    [Crossref]
  13. R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
    [Crossref]
  14. Y. Aoki and K. Tajima, “Stimulated Brillouin scattering in a long single-mode fiber excited with a multimode pump laser,” J. Opt. Soc. Am. B 5(2), 358–363 (1988).
    [Crossref]
  15. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).
  16. A. E. Siegman, Lasers (University Science Books, 1986).
  17. H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45(36), 9191–9197 (2006).
    [Crossref] [PubMed]
  18. D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).
  19. G. Baili, M. Alouini, D. Dolfi, F. Bretenaker, I. Sagnes, and A. Garnache, “Shot-noise-limited operation of a monomode high-cavity-finesse semiconductor laser for microwave photonics applications,” Opt. Lett. 32(6), 650–652 (2007).
    [Crossref] [PubMed]
  20. J. Vyšniauskas, T. Vasiliauskas, E. Šermukšnis, V. Palenskis, and J. Matukas, “Investigation of high-speed transient processes and parameter extraction of InGaAsP laser diodes,” 161–180, www.intechopen.com .
    [Crossref]
  21. D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
    [Crossref]
  22. P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-Electron. Rev. 14(2), 123–128 (2006).
    [Crossref]
  23. J. O. White, G. Rakuljic and C. E. Mungan, “Stimulated Brillouin scattering suppression in fiber amplifiers via chirped diode lasers,” ARL-TN-0451, Army Research Lab. Report (2011).
  24. A. Voskoboinik, J. Wang, B. Shamee, S. R. Nuccio, L. Zhang, M. Chitgarha, A. E. Willner, and M. Tur, “SBS-based fiber optical sensing using frequency-domain simultaneous tone interrogation,” J. Lightwave Technol. 29(11), 1729–1735 (2011).
    [Crossref]
  25. G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, and Y. Jaouën, “Characteristics of the Brillouin spectra in erbium-ytterbium fibers,” Opt. Express 16(5), 3212–3222 (2008).
    [Crossref] [PubMed]
  26. G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
    [Crossref]
  27. L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
    [Crossref]
  28. E. Lichtman, A. A. Friesem, R. G. Waarts, and H. H. Yaffe, “Stimulated Brillouin scattering excited by two pump waves in single-mode fibers,” J. Opt. Soc. Am. B 4(9), 1397–1403 (1987).
    [Crossref]
  29. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22(11), 2378–2384 (2005).
    [Crossref]

2014 (1)

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

2013 (2)

F. Di Teodoro, J. Morais, T. S. McComb, M. K. Hemmat, E. C. Cheung, M. Weber, and R. Moyer, “SBS-managed high-peak-power nanosecond-pulse fiber-based master oscillator power amplifier,” Opt. Lett. 38(13), 2162–2164 (2013).
[Crossref] [PubMed]

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (2)

2009 (1)

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (2)

H. Loh, Y.-J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt. 45(36), 9191–9197 (2006).
[Crossref] [PubMed]

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-Electron. Rev. 14(2), 123–128 (2006).
[Crossref]

2005 (2)

2004 (1)

2003 (2)

H. Lee and G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11(25), 3467–3472 (2003).
[Crossref] [PubMed]

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

1997 (1)

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

1995 (1)

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

1988 (1)

1987 (1)

1963 (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Adel, P.

Agrawal, G. P.

Alic, N.

Alouini, M.

Andrekson, P. A.

Aoki, Y.

Auerbach, M.

Baili, G.

Bello, R.

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

Bickham, S. R.

Bigourd, D.

Bourdon, P.

Boyd, R. W.

Bres, C.-S.

Bretenaker, F.

Canat, G.

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, and Y. Jaouën, “Characteristics of the Brillouin spectra in erbium-ytterbium fibers,” Opt. Express 16(5), 3212–3222 (2008).
[Crossref] [PubMed]

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

Cetina, M.

Chatigny, S.

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Chavez Boggio, J. M.

Chen, X.

Cheung, E. C.

Chitgarha, M.

Chowdhury, D. Q.

Coles, J. B.

Cotter, D.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Crowley, A. M.

Davey, R. P.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

de Sandro, J.-Ph.

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Debarge, G.

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

Demeritt, J. A.

Desrosiers, C.

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Di Teodoro, F.

Dolfi, D.

Douay, M.

Dupriez, P.

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

Durécu, A.

Fallnich, C.

Frantz, L. M.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Friesem, A. A.

Gaeta, A. L.

Gagnon, É.

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Garnache, A.

Gauthier, D. J.

Gleyze, J.-F.

Gokhan, F. S.

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

Gouédard, C.

Gray, S.

Gunning, P.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Hemmat, M. K.

Hocquet, S.

Hugonnot, E.

Jaouën, Y.

Jolivet, V.

Jolly, A.

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

Karlsson, M.

Kashyap, R.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Kobyakov, A.

Krehlik, P.

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-Electron. Rev. 14(2), 123–128 (2006).
[Crossref]

Kulcsar, G.

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

Kumar, S.

Kuo, B. P.-P.

Lago, L.

Lee, H.

Lesueur, G.

Li, M. J.

Lichtman, E.

Lin, Y.-J.

Liu, A.

Loh, H.

Lombard, L.

Lucek, J. K.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

McComb, T. S.

Mishra, R.

Moodie, D. G.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Morais, J.

Morasse, B.

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Moro, S.

Moyer, R.

Mussot, A.

Nesset, D.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Nodvik, J. S.

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

Nuccio, S. R.

Okawachi, Y.

Olmedo, E.

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

Pataca, D. M.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Penninckx, D.

Radic, S.

Rocha, M. L.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Rogers, D. C.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Ruffin, A. B.

Sagnes, I.

Sarma, A. K.

Sauer, M.

Shabeer, M.

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Shamee, B.

Sharping, J. E.

Siddiqui, A. S.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Simon, J.

Smith, K.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

Song, Y.

Souza, R. F.

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

Su, R. T.

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

Tajima, K.

Teper, I.

Thompson, J. K.

Tur, M.

Voskoboinik, A.

Vuletic, V.

Waarts, R. G.

Walton, D. T.

Wandt, D.

Wang, J.

Wang, R.

Wang, X. L.

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

Weber, M.

Weßels, P.

Willner, A. E.

Wu, J.

Xu, X. J.

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

Yaffe, H. H.

Zenteno, L. A.

Zhang, L.

Zhang, X.

Zhou, P.

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

Zhu, Z.

Appl. Opt. (2)

Electron. Lett. (1)

D. Cotter, J. K. Lucek, M. Shabeer, K. Smith, D. C. Rogers, D. Nesset, and P. Gunning, “Self-routing of 100 Gbit/s packets using 6 bit keyword recognition,” Electron. Lett. 31(25), 2201–2202 (1995).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Kulcsar, Y. Jaouën, G. Canat, E. Olmedo, and G. Debarge, “Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er3 + – Yb3 + codoped fiber amplifier,” IEEE Photon. Technol. Lett. 15(6), 801–803 (2003).
[Crossref]

J. Appl. Phys. (1)

L. M. Frantz and J. S. Nodvik, “Theory of pulse propagation in a laser amplifier,” J. Appl. Phys. 34(8), 2346–2349 (1963).
[Crossref]

J. Lightwave Technol. (2)

J. Microwave Optoelectron. (1)

D. M. Pataca, P. Gunning, M. L. Rocha, J. K. Lucek, R. Kashyap, K. Smith, D. G. Moodie, R. P. Davey, R. F. Souza, and A. S. Siddiqui, “Gain-switched DFB lasers,” J. Microwave Optoelectron. 1, 46–63 (1997).

J. Opt. Soc. Am. B (3)

Laser Phys. Lett. (1)

R. T. Su, X. L. Wang, P. Zhou, and X. J. Xu, “All-fiberized master oscillator power amplifier structured narrow-linewidth nanosecond pulsed laser with 505W average power,” Laser Phys. Lett. 10(1), 0150105 (2013).
[Crossref]

Opt. Express (7)

J. B. Coles, B. P.-P. Kuo, N. Alic, S. Moro, C.-S. Bres, J. M. Chavez Boggio, P. A. Andrekson, M. Karlsson, and S. Radic, “Bandwidth-efficient phase modulation techniques for stimulated Brillouin scattering suppression in fiber optic parametric amplifiers,” Opt. Express 18(17), 18138–18150 (2010).
[Crossref] [PubMed]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[Crossref] [PubMed]

A. Liu, “Suppressing stimulated Brillouin scattering in fiber amplifiers using non-uniform fiber and temperature gradient,” Opt. Express 15(3), 977–984 (2007).
[Crossref] [PubMed]

A. Kobyakov, S. Kumar, D. Q. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, and R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005).
[Crossref] [PubMed]

P. Weßels, P. Adel, M. Auerbach, D. Wandt, and C. Fallnich, “Novel suppression scheme for Brillouin scattering,” Opt. Express 12(19), 4443–4448 (2004).
[Crossref] [PubMed]

H. Lee and G. P. Agrawal, “Suppression of stimulated Brillouin scattering in optical fibers using fiber Bragg gratings,” Opt. Express 11(25), 3467–3472 (2003).
[Crossref] [PubMed]

G. Canat, A. Durécu, G. Lesueur, L. Lombard, P. Bourdon, V. Jolivet, and Y. Jaouën, “Characteristics of the Brillouin spectra in erbium-ytterbium fibers,” Opt. Express 16(5), 3212–3222 (2008).
[Crossref] [PubMed]

Opt. Lett. (3)

Opto-Electron. Rev. (1)

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-Electron. Rev. 14(2), 123–128 (2006).
[Crossref]

Proc. SPIE (2)

A. Jolly, F. S. Gokhan, R. Bello, and P. Dupriez, “Longitudinal mode-filling to cancel SBS in fully-fibered MOPAs dedicated to the production of high-energy nanosecond pulses,” Proc. SPIE 9136, 913608 (2014).
[Crossref]

B. Morasse, S. Chatigny, É. Gagnon, J.-Ph. de Sandro, and C. Desrosiers, “Enhanced pulse-shaping capabilities and reduction of non-Linear effects in all-fiber MOPA pulsed system,” Proc. SPIE 7195, 71951D (2009).
[Crossref]

Other (4)

J. O. White, G. Rakuljic and C. E. Mungan, “Stimulated Brillouin scattering suppression in fiber amplifiers via chirped diode lasers,” ARL-TN-0451, Army Research Lab. Report (2011).

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (John Wiley, 1995).

A. E. Siegman, Lasers (University Science Books, 1986).

J. Vyšniauskas, T. Vasiliauskas, E. Šermukšnis, V. Palenskis, and J. Matukas, “Investigation of high-speed transient processes and parameter extraction of InGaAsP laser diodes,” 161–180, www.intechopen.com .
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Implementation of a basic two-stage MOPA for benchmarking purposes (FASE for ASE filter, LD for Laser Diode).
Fig. 2
Fig. 2 Architecture of LD seeds using DFB (top left) and FBG (bottom left) designs and of spectral characteristics referring to the bandwidth of the Brillouin gain (ΔυB).
Fig. 3
Fig. 3 Spectra of FBG (a) and DFB seeds (b, c) with 20pm measurement resolution. Large temperature variations are applied to the chip, in the situation of the FBG, using 100ns long pulses with constant peak power Ppeak = 300mW. The same values of Ppeak, are used to operate the DFB, across the full dynamics range, either considering a medium average power with 100ns long pulses at 10KHz, or higher average power with 500ns long pulses at 100KHz.
Fig. 4
Fig. 4 A selection of typical input pulse-shapes to seed high-energy MOPAs by means of direct current modulation, to be considered in the study of corresponding SBS limitations. Measurements involve current modulation with 2ns transition times and a 3 GHz MB.
Fig. 5
Fig. 5 Computed chirp from the DFB vs the involved pulse-shape (a), given a constant peak power of 300mW, and of its theoretical variations with the actual values of adiabatic and non-adiabatic coefficients of reference (b).
Fig. 6
Fig. 6 Step-by-step calculation process for a saturated YDFA with specified seed conditions.
Fig. 7
Fig. 7 Benchmarking results from our basic SBS model, using 1m long, 10µm MFD fiber for M = 10 longitudinal modes equally spaced over Δλsignal = 0.2nm with weighting coefficients matched to the blue plot in Fig. 3-b (IDFB = 1A). The corresponding pulse-shapes of depleted input, Stokes and acoustic waves are superimposed starting from a 50ns long, input pulse with 3.5µJ energy (a), together with the variations of the depleted input when the peak power is ranged from 45 up to 80W (b).
Fig. 8
Fig. 8 Modeling the propagation of a 80ns long flat-top input pulse with 5W peak power and M = 6, during its amplification along the YDFA up to crossing the SBS threshold, in the presence of gain saturation (a), across the complete space-time computational domain (b) and focusing on the segment which corresponds to the onset of SBS. This location is spaced by just a few cm before the output of segment # 8 at L = 1.20m, which implies Pth_SBS.
Fig. 9
Fig. 9 Modeling the propagation of a 50ns long exponential pulse during its amplification along the YDFA with M = 6, across the complete space-time computational domain up to complete depletion due to SBS (a), and focusing on the depletion area when crossing the SBS threshold (b) along the output fiber section. The fiber length of the YDFA comprises eight fiber sections and the SBS threshold is located a few cm before the output of section # 7 at L = 1m, which implies Pth_SBS = 2.6µJ.
Fig. 10
Fig. 10 Measurement of gradually increasing depletion due to SBS, gradually increasing the input power from 100ns long FBG seed pulses which are launched into a 10µm MFD – 1m long fiber, in the presence of M = 10 modes. Simultaneous monitoring of the transmitted fraction and of back-scattered Stokes enable the superimposition of raw pulse-shapes (a), while further normalization with respect to the peak powers shows gradual pump depletion (b), up to about 50% of the input energy. The measurement bandwidth is equal to 2.5GHz.
Fig. 11
Fig. 11 Evidence of the contribution of transient chirp effects, thanks to the variations of the time of crossing the SBS threshold along various pulse-shapes from DFB seed. Pulses are launched at the input of a 10µm MFD, 1m long YDFA. The value of M ranges from about 4 to 10 and the measurement bandwidth is equal to 12GHz.
Fig. 12
Fig. 12 Variations of the SBS threshold in a 10µm MFD, 1m long fiber with flat-top seeding at 10KHz PRF, as a function of LMF: (a) measurement results (lines) and corresponding predictions (spots) with FBG seed for various pulse durations, (b) measurement results (lines) and corresponding predictions (spots) with DFB seed for various values of the peak modulation current with various values of M.
Fig. 13
Fig. 13 Evidence of the appearance of low-frequency components when decreasing the FSR, thanks to representative statistics from computational results: variations of temporal beating noise from FBG (a) and DFB (b) seeds versus the number of modes, with 30GHz and 1GHz respective values of the FSR.
Fig. 14
Fig. 14 Residual modulations in theoretical pulse envelopes using FBG seed (a) and related RMS noise variations versus the measurement bandwidth (b), assuming LMF with up to 30 modes. Fluctuations due to statistical uncertainties are about +/−20%.
Fig. 15
Fig. 15 Experimental validation of the variations of beating noise as predicted with the numerical model. The MB is varied from DC to 350 MHz, 3GHz and 30GHz, respectively, when driving the seeds with a flat top current pulse with 500ps transition times.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ν L ( t ) = α 4 π { 1 P i n ( t ) d P i n ( t ) d t + κ P i n ( t ) }
I t o t _ J ( λ ) i = 1 M ( J ) I i ( J ) . exp [ ( λ λ i ) 2 ( 2 Δ λ i ( J ) ) 2 ]
g ( ν ) = g b o 1 + ( ν Δ ν B Γ B ) 2
0 L g B ( z ) d z = g B o Γ B v g 4 π V c h [ A r c tan ( π L V c h v g Γ B ) + A r c tan ( 3 π L V c h v g Γ B ) ] = γ g B o
g B e f f = g b o ( 1 + γ Δ ν t o t Γ B ) M
E p z + 1 v g E p t = g B 2 A m = 1 M E s m m = 1 M Q m + G p α p 2 E p { E s 1 z + 1 v g E s 1 t = g B 2 A E p 1 Q 1 * + G s α p 2 E s 1 ......... E s M z + 1 v g E s M t = g B 2 A E p M Q M * + G s α p 2 E s M { Q 1 t + ( Γ B 2 i Δ ν B ) Q 1 = Γ B 2 E p 1 E s 1 * + Q o ......... Q M t + ( Γ B 2 i Δ ν B ) Q M = Γ B 2 E p M E s M * + Q o
O S N R a p p r o x i m a t e d = ( M 1 ) Δ ν F S R ν M a x Δ ν F S R

Metrics