Abstract

This paper presents a prototype of a spectral video system based on hybrid resolution spectral imaging. The system consists of a commercial three-channel color camera and a low-resolution spectral sensor which captures a 68-pixel spectral image by a single snap-shot. By combining the measurement data from both devices, the system produces high-resolution spectral image data frame by frame. The accuracy of the spectral data measured by the system is evaluated at some selected regions in the image. As a result, it is confirmed that spectra can be measured with less or around 10% of normalized root mean squared error. In addition, the capture of spectral videos in 3 frame-per-second and the real-time color reproduction in the same frame rate from the spectral video are demonstrated.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Hauta-Kasari, K. Miyazawa, S. Toyooka, and J. Parkkinen, “Spectral vision system for measuring color images,” J. Opt. Soc. Am. A 16(10), 2352–2362 (1999).
    [CrossRef]
  2. B. Hill, “Color capture, color management and the problem of metamerism,” Proc. SPIE 3963, 3–14 (2000).
  3. H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39(35), 6621–6632 (2000).
    [CrossRef] [PubMed]
  4. J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
    [CrossRef]
  5. M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52(1), 010201 (2008).
    [CrossRef]
  6. J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
    [CrossRef]
  7. J. Park, M. Lee, M. Grossberg, and S. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1–8.
    [CrossRef]
  8. A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
    [CrossRef]
  9. A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
    [CrossRef]
  10. K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).
  11. S. A. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47(28), F71–F76 (2008).
    [CrossRef] [PubMed]
  12. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [CrossRef] [PubMed]
  13. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [CrossRef] [PubMed]
  14. T. Sun, and K. Kelly, “Compressive sensing hyperspectral imager,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), CTuA5.
  15. H. Argeullo and G. R. Arce, “Coded aperture optimization for spectrally agile compressive imaging,” J. Opt. Soc. Am. A 28(11), 2400–2413 (2011).
    [CrossRef]
  16. Y. August, C. Vachman, Y. Rivenson, and A. Stern, “Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains,” Appl. Opt. 52(10), D46–D54 (2013).
    [CrossRef] [PubMed]
  17. F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
    [CrossRef]
  18. P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).
  19. F. Imai and F. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of 6th Color Imaging Conference (Curran Associates, Inc., 1998), pp. 224–227.
  20. R. Kawakami, J. Wright, Y. Tai, Y. Matsushita, M. Ben-Ezra, and K. Ikeuchi, “High-resolution hyperspectral imaging via matrix factorization,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 2329–2336.
  21. X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 297–304.
    [CrossRef]
  22. C. Ma, X. Cao, R. Wu, and Q. Dai, “Content-adaptive high-resolution hyperspectral video acquisition with a hybrid camera system,” Opt. Lett. 39(4), 937–940 (2014).
    [CrossRef] [PubMed]
  23. Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46(28), 7068–7082 (2007).
    [CrossRef] [PubMed]
  24. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements,” Appl. Opt. 48(11), 2188–2202 (2009).
    [CrossRef] [PubMed]
  25. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Class-based spectral reconstruction based on unmixing of low-resolution spectral information,” JOSA A 28(7), 1470–1481 (2011).
    [CrossRef]
  26. Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings of 12th Congress of the International Colour Association (The Colour Group, GB, 2013), pp. 363–366.
  27. W. K. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of a color image scanner,” Appl. Opt. 15(1), 73–75 (1976).
    [CrossRef] [PubMed]
  28. H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
    [CrossRef] [PubMed]
  29. T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).
  30. N. Hashimoto, Y. Murakami, P. A. Bautista, M. Yamaguchi, T. Obi, N. Ohyama, K. Uto, and Y. Kosugi, “Multispectral image enhancement for effective visualization,” Opt. Express 19(10), 9315–9329 (2011).
    [CrossRef] [PubMed]

2014

2013

Y. August, C. Vachman, Y. Rivenson, and A. Stern, “Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains,” Appl. Opt. 52(10), D46–D54 (2013).
[CrossRef] [PubMed]

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

2012

T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).

2011

2010

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[CrossRef] [PubMed]

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

2009

2008

2007

2004

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

2002

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

2000

1999

1997

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

1994

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

1991

P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).

1976

Ajito, T.

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Anderson, J. A.

P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).

Arce, G. R.

Argeullo, H.

August, Y.

Barnett, N.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Bautista, P. A.

Brady, D.

Brettel, H.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Cao, X.

Chavez, P. S.

P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).

Clemente, P.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Dai, Q.

Durán, V.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Eichenholz, J. M.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Farkas, D. L.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Fernández-Alonso, M.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Fish, D.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Fukuda, H.

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Gao, L.

Hagen, N.

Haneishi, H.

M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52(1), 010201 (2008).
[CrossRef]

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

H. Haneishi, T. Hasegawa, A. Hosoi, Y. Yokoyama, N. Tsumura, and Y. Miyake, “System design for accurately estimating the spectral reflectance of art paintings,” Appl. Opt. 39(35), 6621–6632 (2000).
[CrossRef] [PubMed]

Hardeberg, J. Y.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Hasegawa, T.

Hashimoto, M.

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

Hashimoto, N.

Hauta-Kasari, M.

Hill, B.

B. Hill, “Color capture, color management and the problem of metamerism,” Proc. SPIE 3963, 3–14 (2000).

Hirai, A.

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

Hosoi, A.

Ichioka, Y.

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

Ietomi, K.

Inoue, T.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

Irles, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Itoh, K.

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

John, R.

Juang, Y.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Kester, R. T.

Komiya, Y.

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Kosai, Y.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Kosugi, Y.

Lancis, J.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Lindsley, E.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Ma, C.

Mahalakshmi, T.

T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).

Mancill, C. E.

Mathews, S. A.

Matsuoka, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Miyake, Y.

Miyazawa, K.

Murakami, Y.

Muthaiah, R.

T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).

Obi, T.

Ohsawa, K.

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Ohyama, N.

N. Hashimoto, Y. Murakami, P. A. Bautista, M. Yamaguchi, T. Obi, N. Ohyama, K. Uto, and Y. Kosugi, “Multispectral image enhancement for effective visualization,” Opt. Express 19(10), 9315–9329 (2011).
[CrossRef] [PubMed]

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Class-based spectral reconstruction based on unmixing of low-resolution spectral information,” JOSA A 28(7), 1470–1481 (2011).
[CrossRef]

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements,” Appl. Opt. 48(11), 2188–2202 (2009).
[CrossRef] [PubMed]

M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52(1), 010201 (2008).
[CrossRef]

Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46(28), 7068–7082 (2007).
[CrossRef] [PubMed]

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Parkkinen, J.

Pratt, W. K.

Rivenson, Y.

Saito, M.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Schmitt, F.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Sides, S. C.

P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).

Soldevila, F.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Spano, S.

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

Stern, A.

Suto, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Swaminathan, P.

T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).

Tajahuerce, E.

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

Takeyama, N.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Tkaczyk, T. S.

Toyooka, S.

Tsumura, N.

Uto, K.

Vachman, C.

Wagadarikar, A.

Willett, R.

Wu, R.

Yamaguchi, M.

N. Hashimoto, Y. Murakami, P. A. Bautista, M. Yamaguchi, T. Obi, N. Ohyama, K. Uto, and Y. Kosugi, “Multispectral image enhancement for effective visualization,” Opt. Express 19(10), 9315–9329 (2011).
[CrossRef] [PubMed]

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Class-based spectral reconstruction based on unmixing of low-resolution spectral information,” JOSA A 28(7), 1470–1481 (2011).
[CrossRef]

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Piecewise Wiener estimation for reconstruction of spectral reflectance image by multipoint spectral measurements,” Appl. Opt. 48(11), 2188–2202 (2009).
[CrossRef] [PubMed]

M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52(1), 010201 (2008).
[CrossRef]

Y. Murakami, K. Ietomi, M. Yamaguchi, and N. Ohyama, “Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements,” Appl. Opt. 46(28), 7068–7082 (2007).
[CrossRef] [PubMed]

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

Yokoyama, Y.

Appl. Opt.

Appl. Phys. B

F. Soldevila, E. Irles, V. Durán, P. Clemente, M. Fernández-Alonso, E. Tajahuerce, and J. Lancis, “Single-pixel polarimetric imaging spectrometer by compressive sensing,” Appl. Phys. B 113(4), 551–558 (2013).
[CrossRef]

J. Biotechnol.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

J. Imaging Sci. Technol.

K. Ohsawa, T. Ajito, H. Fukuda, Y. Komiya, H. Haneishi, M. Yamaguchi, and N. Ohyama, “Six-band HDTV camera system for spectrum-based color reproduction,” J. Imaging Sci. Technol. 48, 85–92 (2004).

M. Yamaguchi, H. Haneishi, and N. Ohyama, “Beyond red-green-blue (RGB): spectrum-based color imaging technology,” J. Imaging Sci. Technol. 52(1), 010201 (2008).
[CrossRef]

J. Opt. Soc. Am. A

JOSA A

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Class-based spectral reconstruction based on unmixing of low-resolution spectral information,” JOSA A 28(7), 1470–1481 (2011).
[CrossRef]

Opt. Eng.

J. Y. Hardeberg, F. Schmitt, and H. Brettel, “Multispectral color image capture using a liquid crystal tunable filter,” Opt. Eng. 41(10), 2532–2548 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

A. Hirai, T. Inoue, K. Itoh, and Y. Ichioka, “Application of multiple-image Fourier transform spectral imaging to measurement of fast phenomena,” Opt. Rev. 1, 205–207 (1994).
[CrossRef]

A. Hirai, M. Hashimoto, K. Itoh, and Y. Ichioka, “Multichannel spectral imaging system for measurements with the highest signal-to-noise ratio,” Opt. Rev. 4(2), 334–341 (1997).
[CrossRef]

Photo. Eng. Rem. Sens.

P. S. Chavez, S. C. Sides, and J. A. Anderson, “Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic,” Photo. Eng. Rem. Sens. 57, 295–303 (1991).

Proc. SPIE

J. M. Eichenholz, N. Barnett, Y. Juang, D. Fish, S. Spano, E. Lindsley, and D. L. Farkas, “Real-time megapixel multispectral bioimaging,” Proc. SPIE 7568, 75681L (2010).
[CrossRef]

B. Hill, “Color capture, color management and the problem of metamerism,” Proc. SPIE 3963, 3–14 (2000).

Res. J. Appl. Sci. Eng. Technol.

T. Mahalakshmi, R. Muthaiah, and P. Swaminathan, “Review article: an overview of template matching technique in image processing,” Res. J. Appl. Sci. Eng. Technol. 4, 5469–5473 (2012).

Other

Y. Murakami, A. Tanji, and M. Yamaguchi, “Development of low-resolution spectral imager and its application to hybrid-resolution spectral imaging,” in Proceedings of 12th Congress of the International Colour Association (The Colour Group, GB, 2013), pp. 363–366.

J. Park, M. Lee, M. Grossberg, and S. Nayar, “Multispectral imaging using multiplexed illumination,” in Proceedings of IEEE Conference on Computer Vision (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1–8.
[CrossRef]

F. Imai and F. S. Berns, “High-resolution multi-spectral image archives: a hybrid approach,” in Proceedings of 6th Color Imaging Conference (Curran Associates, Inc., 1998), pp. 224–227.

R. Kawakami, J. Wright, Y. Tai, Y. Matsushita, M. Ben-Ezra, and K. Ikeuchi, “High-resolution hyperspectral imaging via matrix factorization,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 2329–2336.

X. Cao, X. Tong, Q. Dai, and S. Lin, “High resolution multispectral video capture with a hybrid camera system,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Institute of Electrical and Electronics Engineers, New York, 2011), pp. 297–304.
[CrossRef]

T. Sun, and K. Kelly, “Compressive sensing hyperspectral imager,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), CTuA5.

Supplementary Material (1)

» Media 1: MP4 (8434 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Conceptual diagram of hybrid resolution spectral imaging.

Fig. 2
Fig. 2

Processing flow of piece-wise Wiener estimation method.

Fig. 3
Fig. 3

Schematic diagram of LRSS.

Fig. 4
Fig. 4

Photograph of LRSS.

Fig. 5
Fig. 5

Calibration data of LRSS: (a) relationship between pixel position and wavelength for fiber #1, (b) common spectral sensitivity for all fibers, and (c) sensitivity ratio among fibers.

Fig. 6
Fig. 6

Accuracy evaluation of spectra measured by LRSS by compared to the spectra measured spectrophotometer SR-3 for (a) LED lamp and (b) artificial sun light.

Fig. 7
Fig. 7

(a) Photograph of when prototype system capture image of color chart. (b) The spectral sensitivity of the RGB color camera.

Fig. 8
Fig. 8

Example set of images captured by high-resolution RGB camera and LRSS.

Fig. 9
Fig. 9

Native measurement data by RGB camera (top) and by LRSS (bottom) for green & yellow (left), blue & red (middle) color patches of color chart and flowers (right). The rectangles on color images indicate the areas for accuracy evaluation.

Fig. 10
Fig. 10

(a) The color image under CIE D65 illuminant calculated from the spectral image of flowers. The spectral image was reconstructed by the piecewise Wiener estimation using the spectral data obtained from the LRSS. (b) The reconstructed spectral radiance of the pixels along the vertical line between the triangle marks indicated at top and bottom of the image (a). (c) is the spectral radiance of the nearest fiber of the LRSS, at the pixels along the same vertical line as (b). In (b) and (c), the vertical axes indicate the corresponding pixel location in the vertical directions, and the horizontal axes designate the wavelength. The gray levels indicate the radiance values. The spatial resolution in (b) significantly higher than (c) is obtained (vertical direction), while the spectral resolution is the same (horizontal direction).

Fig. 11
Fig. 11

Estimated and measured spectra of carnations (left) and rose (right).

Fig. 12
Fig. 12

Single-frame excerpts from video of screen capture of display when human hand is measured by prototype of hybrid resolution spectral imaging system (Media 1). The right-hand window shows the color image reproduction from the spectral image data, the bottom-left window shows the LRSS measurement as a color image, and the top-left window shows the graph of the spectral reflectance functions at the positions pointed by the mouse click on the right-hand window. In this window, only 400-700nm range is shown.

Tables (1)

Tables Icon

Table 1 Normalized Root Mean Squared Error of Spectra

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f( i,j )= r=1 R α r ( i,j ) φ r =[ φ 1 φ R ][ α 1 ( i,j ) α R ( i,j ) ]=Φα( i,j ),
g( i,j )=Hf( i,j ),
g( i,j )=[ H Φ k ]α( i,j ),
f ^ ( i,j )= Φ k [ H Φ k ] g( i,j )= A k g( i,j ),
A k = C k H T ( H C k H T + C Noise ) 1 ,
f l ( i,j )= B l Ag( i,j ),
B c =C E R E I 1 ,

Metrics