Abstract

In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code “container”, adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical encryption and QR codes: Secure and noise-free information retrieval

John Fredy Barrera, Alejandro Mira, and Roberto Torroba
Opt. Express 21(5) 5373-5378 (2013)

Experimental QR code optical encryption: noise-free data recovering

John Fredy Barrera, Alejandro Mira-Agudelo, and Roberto Torroba
Opt. Lett. 39(10) 3074-3077 (2014)

Experimental optical encryption of grayscale information

Alejandro Velez Zea, John Fredy Barrera, and Roberto Torroba
Appl. Opt. 56(21) 5883-5889 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
    [Crossref] [PubMed]
  2. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39(8), 2031–2035 (2000).
    [Crossref]
  3. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption system that uses phase conjugation in a photorefractive crystal,” Appl. Opt. 37(35), 8181–8186 (1998).
    [Crossref] [PubMed]
  4. N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284(3), 735–739 (2011).
    [Crossref]
  5. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
    [Crossref]
  6. B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28(4), 269–271 (2003).
    [Crossref] [PubMed]
  7. S. Liu and J. T. Sheridan, “Optical encryption by combining image scrambling techniques in fractional Fourier domains,” Opt. Commun. 287, 73–80 (2013).
    [Crossref]
  8. J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
    [Crossref]
  9. J. F. Barrera, A. Mira, and R. Torroba, “Optical encryption and QR codes: Secure and noise-free information retrieval,” Opt. Express 21(5), 5373–5378 (2013).
    [Crossref] [PubMed]
  10. J. F. Barrera, A. Mira-Agudelo, and R. Torroba, “Experimental QR code optical encryption: noise-free data recovering,” Opt. Lett. 39(10), 3074–3077 (2014).
    [Crossref] [PubMed]
  11. Z. Ren, P. Su, J. Ma, and G. Jin, “Secure and noise-free holographic encryption with a quick-response code,” Chin. Opt. Lett. 12(1), 010601 (2014).
    [Crossref]
  12. A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
    [Crossref]
  13. A. Alfalou, A. Mansour, M. Elbouz, and C. Brosseau, “Optical compression scheme to multiplex and simultaneously encode images,” in Optical and Digital Image Processing Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley, 2011).
  14. J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
    [Crossref]
  15. O. Graydon, “Cryptography: Quick response codes,” Nat. Photonics 7(5), 343 (2013).
    [Crossref]
  16. ISO, IEC 18004: 2006, “Information technology - Automatic identification and data capture techniques – QR Code 2005 bar code symbology specification,” International Organization for Standardization, Geneva, Switzerland (2006).

2014 (2)

2013 (4)

J. F. Barrera, A. Mira, and R. Torroba, “Optical encryption and QR codes: Secure and noise-free information retrieval,” Opt. Express 21(5), 5373–5378 (2013).
[Crossref] [PubMed]

S. Liu and J. T. Sheridan, “Optical encryption by combining image scrambling techniques in fractional Fourier domains,” Opt. Commun. 287, 73–80 (2013).
[Crossref]

J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
[Crossref]

O. Graydon, “Cryptography: Quick response codes,” Nat. Photonics 7(5), 343 (2013).
[Crossref]

2011 (2)

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284(3), 735–739 (2011).
[Crossref]

2010 (1)

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

2009 (1)

2003 (1)

2000 (1)

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39(8), 2031–2035 (2000).
[Crossref]

1998 (1)

1995 (1)

Alfalou, A.

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1(3), 589–636 (2009).
[Crossref]

Barrera, J. F.

Bolognini, N.

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

Brosseau, C.

Elbouz, M.

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

Graydon, O.

O. Graydon, “Cryptography: Quick response codes,” Nat. Photonics 7(5), 343 (2013).
[Crossref]

Hennelly, B.

Javidi, B.

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39(8), 2031–2035 (2000).
[Crossref]

P. Refregier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20(7), 767–769 (1995).
[Crossref] [PubMed]

Jin, G.

Joseph, J.

Keryer, G.

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

Liu, S.

S. Liu and J. T. Sheridan, “Optical encryption by combining image scrambling techniques in fractional Fourier domains,” Opt. Commun. 287, 73–80 (2013).
[Crossref]

Ma, J.

Mansour, A.

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

Millán, M. S.

J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
[Crossref]

Mira, A.

Mira-Agudelo, A.

Naughton, T. J.

N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284(3), 735–739 (2011).
[Crossref]

Nishchal, N. K.

N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284(3), 735–739 (2011).
[Crossref]

Nomura, T.

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39(8), 2031–2035 (2000).
[Crossref]

Perez-Cabre, E.

J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
[Crossref]

Refregier, P.

Ren, Z.

Rios, C.

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

Rueda, E.

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

Sheridan, J. T.

S. Liu and J. T. Sheridan, “Optical encryption by combining image scrambling techniques in fractional Fourier domains,” Opt. Commun. 287, 73–80 (2013).
[Crossref]

B. Hennelly and J. T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28(4), 269–271 (2003).
[Crossref] [PubMed]

Singh, K.

Su, P.

Tebaldi, M.

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

Torroba, R.

Unnikrishnan, G.

Vilardy, J. M.

J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (1)

Chin. Opt. Lett. (1)

J. Opt. (2)

A. Alfalou, M. Elbouz, A. Mansour, and G. Keryer, “New spectral image compression method based on an optimal phase coding and the RMS duration principle,” J. Opt. 12(11), 115403 (2010).
[Crossref]

J. M. Vilardy, M. S. Millán, and E. Perez-Cabre, “Improved decryption quality and security of a joint transform correlator-based encryption system,” J. Opt. 15(2), 025401 (2013).
[Crossref]

Nat. Photonics (1)

O. Graydon, “Cryptography: Quick response codes,” Nat. Photonics 7(5), 343 (2013).
[Crossref]

Opt. Commun. (3)

N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284(3), 735–739 (2011).
[Crossref]

S. Liu and J. T. Sheridan, “Optical encryption by combining image scrambling techniques in fractional Fourier domains,” Opt. Commun. 287, 73–80 (2013).
[Crossref]

J. F. Barrera, E. Rueda, C. Rios, M. Tebaldi, N. Bolognini, and R. Torroba, “Experimental opto-digital synthesis of encrypted sub-samples of an image to improve its decoded quality,” Opt. Commun. 284(19), 4350–4355 (2011).
[Crossref]

Opt. Eng. (1)

T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39(8), 2031–2035 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

ISO, IEC 18004: 2006, “Information technology - Automatic identification and data capture techniques – QR Code 2005 bar code symbology specification,” International Organization for Standardization, Geneva, Switzerland (2006).

A. Alfalou, A. Mansour, M. Elbouz, and C. Brosseau, “Optical compression scheme to multiplex and simultaneously encode images,” in Optical and Digital Image Processing Fundamentals and Applications, G. Cristobal, P. Schelkens, and H. Thienpont, eds. (Wiley, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup (CS: collimation system, BS1 and BS2: beam splitters, M1 and M2: mirrors, SLM: spatial light modulator, f: focal distance of the lens).
Fig. 2
Fig. 2 (a) Original input (image taken from Txemi Jendrix inspiriens, http://www.txemijendrix.com), (b) input recovered without subdivision, (c) input divided into 36 pieces, (d) output with the wrong optical key, (e) result using the right optical key, but not having the scrambling key, and (f) input recovered with the optical and the scrambling keys.
Fig. 3
Fig. 3 (a) original QR code containing the message “Optical scrambling”, (b) QR code processed in a single step, (c) QR code (a) divided into a matrix of 6x6 elements, (d) QR code recovered with the optical key, but not having the scrambling key, (e) QR code recovered with the appropriate keys and (f) result from reading (e) using a smartphone.
Fig. 4
Fig. 4 Recovering images: (a) and (b) with both appropriate optical and scrambling keys, (c) and (d) including the nonlinear method.
Fig. 5
Fig. 5 Protocol applied to a QR code with the letter “B”; (a) result recovered with both correct keys, (b) result retrieved adding the nonlinear noise reduction technique, and (c) smartphone reading from (a).
Fig. 6
Fig. 6 NMSE curves as a function of the percentage of random noise affecting the encrypted sections of the QR code of the message “Optical scrambling”.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

JPS( u,v )= | C( u,v ) | 2 + | R 2 ( u,v ) | 2 + C * ( u,v ) R 2 ( u,v )exp( 4πibu ) +C( u,v ) R 2 * ( u,v )exp( 4πibu )
E( u,v )=C( u,v ) R 2 * ( u,v )exp[ 2πi( x'u+y'v ) ]
L( u,v )= R 2 ( u,v )
d(x,y)=o( x,y ) r 1 ( x,y )[ r 2 * ( x,y ) r 2 ( x,y ) ]δ( xx',yy' )
i(x,y)=o( x,y ) r 1 ( x,y )δ( xx',yy' )
E m ( u,v )= C m ( u,v ) R 2 * ( u,v )exp[ 2πi( x m u+ y m v ) ]
i m (x,y)= o m ( x,y ) r 1 ( x,y )δ( x x m ,y y m )
N( u,v )= E( u,v ) | R 2 ( u,v ) | 2 R 2 ( u,v )
i(x,y)=o( x,y ) r 1 ( x,y )
NMSE= m,n M,N | I( m,n )I'( m,n ) | 2 m,n M,N | I( m,n ) I w ( m,n ) | 2

Metrics