Abstract

Terahertz (THz) generation by optical rectification (OR) using tilted-pulse-fronts is studied. A one-dimensional (1-D) model which simultaneously accounts for (i) the nonlinear coupled interaction of the THz and optical radiation, (ii) angular and material dispersion, (iii) absorption, iv) self-phase modulation and (v) stimulated Raman scattering is presented. We numerically show that the large experimentally observed cascaded frequency down-shift and spectral broadening (cascading effects) of the optical pump pulse is a direct consequence of THz generation. In the presence of this large spectral broadening, the large angular dispersion associated with tilted-pulse-fronts which is ~15-times larger than material dispersion, accentuates phase mismatch and degrades THz generation. Consequently, this cascading effect in conjunction with angular dispersion is shown to be the strongest limitation to THz generation in lithium niobate for pumping at 1 µm. It is seen that the exclusion of these cascading effects in modeling OR, leads to a significant overestimation of the optical-to-THz conversion efficiency. The results are verified with calculations based on a 2-D spatial model. The simulation results are supported by experiments.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations

Xiaojun Wu, Sergio Carbajo, Koustuban Ravi, Frederike Ahr, Giovanni Cirmi, Yue Zhou, Oliver D. Mücke, and Franz X. Kärtner
Opt. Lett. 39(18) 5403-5406 (2014)

Theory of terahertz generation by optical rectification using tilted-pulse-fronts

Koustuban Ravi, Wenqian Ronny Huang, Sergio Carbajo, Emilio A. Nanni, Damian N. Schimpf, Erich P. Ippen, and Franz. X. Kärtner
Opt. Express 23(4) 5253-5276 (2015)

Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption

Sen-Cheng Zhong, Zhao-Hui Zhai, Jiang Li, Li-Guo Zhu, Jun Li, Kun Meng, Qiao Liu, Liang-Hui Du, Jian-Heng Zhao, and Ze-Ren Li
Opt. Express 23(24) 31313-31323 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
    [Crossref]
  2. L. J. Wong, A. Fallahi, and F. X. Kärtner, “Compact electron acceleration and bunch compression in THz waveguides,” Opt. Express 21(8), 9792–9806 (2013).
    [Crossref] [PubMed]
  3. L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
    [Crossref]
  4. E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
    [Crossref]
  5. S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
    [Crossref] [PubMed]
  6. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  7. K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
    [Crossref]
  8. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
    [Crossref]
  9. S. W. Huang, E. Granados, W. R. Huang, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
    [Crossref] [PubMed]
  10. J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
    [Crossref] [PubMed]
  11. J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
    [Crossref] [PubMed]
  12. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).
  13. C. Vicario, B. Monoszlai, C. S. Lombosi, A. Mareczko, A. Courjaud, J. A. Fülöp, and C. P. Hauri, “Pump pulse width and temperature effects in lithium niobate for efficient THz generation,” Opt. Lett. 38(24), 5373–5376 (2013).
    [Crossref] [PubMed]
  14. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  15. S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
    [Crossref]
  16. M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28(7), 1724–1734 (2011).
    [Crossref]
  17. X. Wu, S. Carbajo, K. Ravi, G. Cirmi, F. Ahr, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Highly Efficient Generation of Terahertz Radiation from Lithium Niobate by Ti:Sapphire Laser Pulses,” http://arXiv:1406.4949 (2014).
  18. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
    [Crossref]
  19. M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3,” J. Opt. Soc. Am. B 26(9), A101–A106 (2009).
    [Crossref]
  20. W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kӓrtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 61, (online) (2014), http://www.tandfonline.com/doi/abs/10.1080/09500340.2013.868547#.U9_Y11f5dyI .
  21. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [Crossref]
  22. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
    [Crossref]
  23. R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
    [Crossref]
  24. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19(20), 18754–18773 (2011).
    [Crossref] [PubMed]
  25. L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  26. M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
    [Crossref] [PubMed]
  27. O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
    [Crossref]

2014 (2)

2013 (4)

2012 (1)

2011 (6)

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28(7), 1724–1734 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, I. Hartl, and M. E. Fermann, “Supercontinuum generation in quasi-phasematched waveguides,” Opt. Express 19(20), 18754–18773 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (1)

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

2007 (2)

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2002 (1)

1999 (1)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

1996 (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

1988 (1)

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

Almasi, G.

Almási, G.

Bakunov, M. I.

Balogh, E.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Blanchard, F.

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Bodrov, S. B.

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

M. I. Bakunov, S. B. Bodrov, and E. A. Mashkovich, “Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals,” J. Opt. Soc. Am. B 28(7), 1724–1734 (2011).
[Crossref]

Bolduc, M.

Cooke, D. G.

Courjaud, A.

DeSalvo, R.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Doi, A.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Dombi, P.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Fallahi, A.

Farkas, G.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Fejer, M. M.

Fermann, M. E.

Field, R. W.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Fleischer, S.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Fujiwara, T.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Fülop, J. A.

L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
[Crossref]

Fülöp, J. A.

Furukawa, Y.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Granados, E.

Hafez, H.

Hagan, D. J.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Hartl, I.

Hauri, C. P.

Hebling, J.

L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Hirori, H.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

Hoffmann, M. C.

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Hong, K. H.

Huang, S. W.

Huang, W. R.

Ikushima, A. J.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Jewariya, M.

Karsch, S.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Kärtner, F. X.

Kitamura, K.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Klingebiel, S.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Kovacs, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Kozma, I. Z.

Krausz, F.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

Langrock, C.

Lombosi, C.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Lombosi, C. S.

Malkov, Y. A.

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Mareczko, A.

Martinez, O. E.

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

Mashkovich, E. A.

Monoszlai, B.

Morandotti, R.

Murzanev, A.

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Nagai, M.

Nelson, K. A.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Ohama, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Ollmann, Z.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Ozaki, T.

Pálfalvi, L.

L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
[Crossref]

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz, S. Karsch, and J. Hebling, “Generation of sub-mJ terahertz pulses by optical rectification,” Opt. Lett. 37(4), 557–559 (2012).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, and J. Hebling, “Towards generation of mJ-level ultrashort THz pulses by optical rectification,” Opt. Express 19(16), 15090–15097 (2011).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Pelc, J. S.

Péter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Phillips, C. R.

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Razavipour, H.

Ropagnol, X.

Said, A. A.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Sergeev, Y. A.

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Sheik-Bahae, M.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Skrobol, C.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Stepanov, A. N.

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Takahashi, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

Tanaka, K.

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

M. Jewariya, M. Nagai, and K. Tanaka, “Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3,” J. Opt. Soc. Am. B 26(9), A101–A106 (2009).
[Crossref]

Tosa, V.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Toth, G.

L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
[Crossref]

Van Stryland, E. W.

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

Varju, K.

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Vicario, C.

Wong, L. J.

Yeh, K. L.

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

M. C. Hoffmann, K. L. Yeh, J. Hebling, and K. A. Nelson, “Efficient terahertz generation by optical rectification at 1035 nm,” Opt. Express 15(18), 11706–11713 (2007).
[Crossref] [PubMed]

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

Zapata, L. E.

Zhou, Y.

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

K. L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort terahertz pulses by optical rectification,” Appl. Phys. Lett. 90(17), 171121 (2007).
[Crossref]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett. 98(9), 091106 (2011).
[Crossref]

S. B. Bodrov, A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted front laser pulses in weakly and strongly non-linear regimes,” Appl. Phys. Lett. 103(25), 251103 (2013).
[Crossref]

Electron. Lett. (1)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, and K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35(6), 499–501 (1999).
[Crossref]

IEEE J. Quantum Electron. (2)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W. Van Stryland, and M. Sheik-Bahae, “Infrared to ultraviolet measurements of two-photon absorption and n 2 in wide bandgap solids,” IEEE J. Quantum Electron. 32(8), 1324–1333 (1996).
[Crossref]

O. E. Martinez, “Matrix formalism for pulse compressors,” IEEE J. Quantum Electron. 24(12), 2530–2536 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, “High-Power THz Generation, THz Nonlinear optics and THz Nonlinear Spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 14(2), 345–353 (2008).
[Crossref]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Phys. Rev. A (1)

E. Balogh, K. Kovacs, P. Dombi, J. A. Fülöp, G. Farkas, J. Hebling, V. Tosa, and K. Varju, “Single attosecond pulse from terahertz-assisted high-order harmonic generation,” Phys. Rev. A 84(2), 023806 (2011).
[Crossref]

Phys. Rev. Lett. (1)

S. Fleischer, Y. Zhou, R. W. Field, and K. A. Nelson, “Molecular orientation and alignment by intense single-cycle THz pulses,” Phys. Rev. Lett. 107(16), 163603 (2011).
[Crossref] [PubMed]

Phys. Rev. ST Accel. Beams (1)

L. Pálfalvi, J. A. Fülop, G. Toth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. ST Accel. Beams 17(3), 031301 (2014).
[Crossref]

Other (3)

X. Wu, S. Carbajo, K. Ravi, G. Cirmi, F. Ahr, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Highly Efficient Generation of Terahertz Radiation from Lithium Niobate by Ti:Sapphire Laser Pulses,” http://arXiv:1406.4949 (2014).

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kӓrtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 61, (online) (2014), http://www.tandfonline.com/doi/abs/10.1080/09500340.2013.868547#.U9_Y11f5dyI .

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient Generation of THz Pulses with 0.4 mJ Energy,” in Conference on Lasers and Electro-optics (CLEO), June 8–13, San Jose (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Setup for OR using tilted pulse fronts: An optical pump pulse is incident at an angle θi onto a diffraction grating. Frequency components are scattered off at different angles θd(ω) and are imaged onto the lithium niobate crystal by a focusing lens. Phase matching occurs as in DFG and the THz propagates at an angle γ with respect to the optical pump. The spatial profile of the angularly dispersed beam at any time instant is tilted with respect to its propagation direction and is called the tilted-pulse-front, with tilt angle defined as γ. If the THz wave propagates a distance z, the optical wave has propagated a distance z/cosγ.
Fig. 2
Fig. 2 Comparison of experimental and simulated optical spectra for different amounts of generated THz. The frequency down-shift and spectral broadening can be modeled only by the simultaneous solution of the THz and optical fields. (a) No broadening or red-shift is observed when conversion efficiency η = 0%, which implies small effect of SPM. (b)There is large cascaded frequency down-shift and spectral broadening corresponding to a larger amount of THz generation (c) Maximum frequency down-shift and spectral broadening is observed when conversion efficiency is maximum at ηmax = 0.8%. Conversion efficiency, amount of frequency down-shift and spectral broadening are in good agreement with experiments [9]. The difference between theory and experiment can be attributed to uncertainties in material parameters ( χ eff (2) , n 2 , α THz ) and experiments. The measured spectra include spatial averaging effects which are not included in the calculations, which could explain their difference.
Fig. 3
Fig. 3 Conversion efficiencies as a function of effective length are calculated by switching on and switching off various effects. Material dispersion and absorption are considered for all cases. The pump fluence is 20 mJ/cm2, χ eff (2) =360 pm/V, n2 = 10−15 cm2/W and crystal temperature is 100K.(a) Gaussian pulses with 500 fs pulse width at FWHM with peak intensity of 40 GW/cm2 are used. Cascading effects together with GVD-AD leads to the lowest conversion efficiencies. The drop in conversion efficiency is attributed to the enhancement of phase mismatch caused by dispersion due to the large spectral broadening caused by THz generation (See Figs. 2(b)-2(c)). However, since group velocity dispersion due to angular dispersion (GVD-AD) is more significant than group velocity dispersion due to material dispersion at optical frequencies in lithium niobate, cascading effects in conjunction with GVD-AD is the strongest limitation to THz generation. SPM effects are much less detrimental since they cause relatively small broadening of the optical pump spectrum (see Fig. 2(a)). (b) Cascading effects along with GVD-AD are most detrimental even for a 150 fs Gaussian pulse with three times larger peak intensity.
Fig. 4
Fig. 4 Simulation parameters are the same as in Fig. 3. (a) THz fluence (red) and optical fluence (oblique, cyan/light-blue) when only SPM effects are included. Regions within the green box have non-zero χ(2).THz generation occurs along the full length of optical pump pulse propagation. Minimal broadening by SPM is seen between pulse spectra at locations (i) to (iii). A slight narrowing of the spectrum is seen in (ii), compared to (i) due to the spatial chirp associated with angular dispersion. The conversion efficiency is 2.28% (b) THz and optical fluence when cascading effects are included. Note how the pulse spectrum in location (i) is rapidly broadened in locations (ii),(iii). THz generation ceases once the pulse spectrum has drastically broadened. The conversion efficiency is only 0.85%.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

k(ω)= 1 cosγ ωn(ω) c + (ω ω 0 ) 2 2 k" (ω) AD
k" (ω) AD = n g 2 ( ω 0 ) ω 0 cn( ω 0 ) tan 2 γ
d A THz (Ω,z) dz = α(Ω) 2 A THz (Ω,z) j Ω 2 2 c 2 k(Ω) χ eff (2) (z) 0 A op (ω+Ω,z) A op *(ω,z) e j[ k(ω+Ω)k(ω)k(Ω) ]z dω
d A op (ω,z) dz = α op A op (ω,z) 2 j ω 2 2 c 2 k(ω) χ eff (2) (z) 0 A op (ω+Ω,z) A THz *(Ω,z) e j[ k(ω+Ω)k(ω)k(Ω) ]z dΩ j ω 2 2 c 2 k(ω) χ eff (2) (z) 0 A op (ωΩ,z) A THz (Ω,z) j[k(ωΩ)k(ω)+k(Ω)]z dΩ +F{ j ε 0 ω 0 n ( ω 0 ) 2 n 2 (z) 2 | A op (z,t) | 2 A op (z,t) }+F{ j ε 0 ω 0 n ( ω 0 ) 2 n 2 (z) 2 [ | A op (z,tt') | 2 h r (t') ] A op (z,t) }

Metrics