Abstract

Accurate amplitude and phase measurements of ultrashort optical waveforms are essential for their use in a wide range of scientific disciplines. Here we report the first demonstration of full-field optical reconstruction of ultrashort waveforms using a time-to-space converter, followed by a spatial recording of an interferogram. The algorithm-free technique is demonstrated by measuring ultrashort pulses that are widely frequency chirped from negative to positive, as well as phase modulated pulse packets. Amplitude and phase measurements were recorded for pulses ranging from 0.5 ps to 10 ps duration, with measured dimensionless chirp parameter values from −30 to 30. The inherently single-shot nature of time-to-space conversion enables full-field measurement of complex and non-repetitive waveforms.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Real-time coherent detection of phase modulated ultrashort pulses after time-to-space conversion and spatial demultiplexing

Dror Shayovitz, Harald Herrmann, Wolfgang Sohler, Raimund Ricken, Christine Silberhorn, and Dan M. Marom
Opt. Express 22(25) 31138-31145 (2014)

Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation

N. H. Matlis, G. R. Plateau, J. van Tilborg, and W. P. Leemans
J. Opt. Soc. Am. B 28(1) 23-27 (2011)

Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral interferometry

Mohammad H. Asghari, Yongwoo Park, and José Azaña
Opt. Express 18(16) 16526-16538 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
    [Crossref] [PubMed]
  2. B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).
  3. R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express 17(15), 12741–12752 (2009).
    [Crossref] [PubMed]
  4. W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
    [Crossref]
  5. T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of Single-Channel 16-QAM Data Signals at Terabaud Symbol Rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
    [Crossref]
  6. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
    [Crossref] [PubMed]
  7. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
    [Crossref] [PubMed]
  8. D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
    [Crossref]
  9. L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25(6), 70–80 (2008).
    [Crossref]
  10. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
    [Crossref] [PubMed]
  11. D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial–spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
    [Crossref]
  12. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792–794 (1998).
    [Crossref] [PubMed]
  13. P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
    [Crossref] [PubMed]
  14. K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
    [Crossref]
  15. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [Crossref]
  16. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref] [PubMed]
  17. C. Dorrer, “Single-shot measurement of the electric field of optical waveforms by use of time magnification and heterodyning,” Opt. Lett. 31(4), 540–542 (2006).
    [Crossref] [PubMed]
  18. A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
    [Crossref]
  19. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
    [Crossref]
  20. Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, and S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21(21), 1753–1755 (1996).
    [Crossref] [PubMed]
  21. P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14(5), 1159–1170 (1997).
    [Crossref]
  22. K. Oba, P. C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond single-shot correlation system: a time-domain approach,” Appl. Opt. 38(17), 3810–3817 (1999).
    [Crossref] [PubMed]
  23. A. M. Kanan and A. M. Weiner, “Efficient time-to-space conversion of femtosecond optical pulses,” J. Opt. Soc. Am. B 15(3), 1242–1245 (1998).
    [Crossref]
  24. D. M. Marom, D. Panasenko, P.-C. Sun, and Y. Fainman, “Linear and nonlinear operation of a time-to-space processor,” J. Opt. Soc. Am. A 18(2), 448–458 (2001).
    [Crossref] [PubMed]
  25. J.-H. Chung and A. M. Weiner, “Real-time detection of femtosecond optical pulse sequences via time-to-space conversion in the lightwave communications band,” J. Lightwave Technol. 21(12), 3323–3333 (2003).
    [Crossref]
  26. D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
    [Crossref]
  27. D. Shayovitz and D. M. Marom, “High-resolution, background-free, time-to-space conversion by collinearly phase-matched sum-frequency generation,” Opt. Lett. 36(11), 1957–1959 (2011).
    [Crossref] [PubMed]
  28. D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal,” Opt. Express 20(24), 27388–27395 (2012).
    [Crossref] [PubMed]
  29. D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “Time-to-space conversion of ultrafast waveforms at 1.55 μm in a planar periodically poled lithium niobate waveguide,” Opt. Lett. 38(22), 4708–4711 (2013).
    [Crossref] [PubMed]
  30. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
    [Crossref]
  31. L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
    [Crossref]
  32. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, 2002).
  33. D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “Coherent detection of phase modulated ultrashort optical pulses using time-to-space conversion at 1.55μm,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu2I.3.

2013 (1)

2012 (6)

D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “High resolution time-to-space conversion of sub-picosecond pulses at 1.55µm by non-degenerate SFG in PPLN crystal,” Opt. Express 20(24), 27388–27395 (2012).
[Crossref] [PubMed]

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

T. Richter, E. Palushani, C. Schmidt-Langhorst, R. Ludwig, L. Molle, M. Nölle, and C. Schubert, “Transmission of Single-Channel 16-QAM Data Signals at Terabaud Symbol Rates,” J. Lightwave Technol. 30(4), 504–511 (2012).
[Crossref]

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
[Crossref] [PubMed]

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

2011 (2)

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

D. Shayovitz and D. M. Marom, “High-resolution, background-free, time-to-space conversion by collinearly phase-matched sum-frequency generation,” Opt. Lett. 36(11), 1957–1959 (2011).
[Crossref] [PubMed]

2010 (1)

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

2009 (1)

2008 (2)

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25(6), 70–80 (2008).
[Crossref]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

2006 (2)

2003 (1)

2001 (3)

2000 (1)

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

1999 (1)

1998 (2)

1997 (3)

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

D. Meshulach, D. Yelin, and Y. Silberberg, “Real-time spatial–spectral interference measurements of ultrashort optical pulses,” J. Opt. Soc. Am. B 14(8), 2095–2098 (1997).
[Crossref]

P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14(5), 1159–1170 (1997).
[Crossref]

1996 (2)

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
[Crossref]

Y. T. Mazurenko, S. E. Putilin, A. G. Spiro, A. G. Beliaev, V. E. Yashin, and S. A. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21(21), 1753–1755 (1996).
[Crossref] [PubMed]

1994 (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

1993 (1)

Agostini, P.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Akturk, S.

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Barthélémy, A.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

Beaurepaire, E.

Beliaev, A. G.

Blaga, C. I.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Boudoux, C.

Bowlan, P.

Chizhov, S. A.

Cho, H.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Chung, J.-H.

Cundiff, S. T.

DeLong, K. W.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
[Crossref]

DiChiara, A. D.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

DiMauro, L. F.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Dorrer, C.

Fainman, Y.

Farge, E.

Fittinghoff, D. N.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
[Crossref]

Fontaine, N. K.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Froehly, C.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

Gabolde, P.

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Gu, X.

Heritage, J. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Herrmann, H.

Huse, N.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Iaconis, C.

Joffre, M.

Kanan, A. M.

Kane, D. J.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[Crossref] [PubMed]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

Khalil, M.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Kimmel, M.

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

Krumbugel, M. A.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Labroille, G.

Lin, C. D.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Louradour, F.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

Ludwig, R.

Lynch, M. S.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Marom, D. M.

Mazurenko, Y. T.

McGresham, K.

Meshulach, D.

Messager, V.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

Miller, T. A.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Molle, L.

Mouradian, L.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

Mouradian, L. Kh.

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

Muradyan, A.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

Ng, W.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Nölle, M.

O’Shea, P.

Oba, K.

Olivier, N.

Palushani, E.

Panasenko, D.

D. M. Marom, D. Panasenko, P.-C. Sun, and Y. Fainman, “Linear and nonlinear operation of a time-to-space processor,” J. Opt. Soc. Am. A 18(2), 448–458 (2001).
[Crossref] [PubMed]

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[Crossref]

Pillai, R. S.

Putilin, S. E.

Richman, B. A.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Richter, T.

Ricken, R.

Rockwood, T. D.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Schmidt-Langhorst, C.

Schoenlein, R. W.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Schubert, C.

Scott, R. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Sefler, G. A.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Shayovitz, D.

Shreenath, A.

Silberberg, Y.

Silberhorn, C.

Sistrunk, E.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Soares, F. M.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Sohler, W.

Spiro, A. G.

Strader, M. L.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Sun, P. C.

Sun, P.-C.

Sweetser, J. N.

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Trebino, R.

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25(6), 70–80 (2008).
[Crossref]

P. Bowlan, P. Gabolde, A. Shreenath, K. McGresham, R. Trebino, and S. Akturk, “Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time,” Opt. Express 14(24), 11892–11900 (2006).
[Crossref] [PubMed]

P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
[Crossref] [PubMed]

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
[Crossref]

D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
[Crossref] [PubMed]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Valley, G. C.

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

Van Kuiken, B. E.

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Veilleux, I.

Walmsley, I. A.

Weiner, A. M.

Willits, J. T.

Xu, J.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Xu, L.

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25(6), 70–80 (2008).
[Crossref]

Yashin, V. E.

Yelin, D.

Yesayan, G.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

Yoo, S. J. B.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Zeek, E.

L. Xu, E. Zeek, and R. Trebino, “Simulations of frequency-resolved optical gating for measuring very complex pulses,” J. Opt. Soc. Am. B 25(6), 70–80 (2008).
[Crossref]

Zeytunyan, A.

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

Zhang, K.

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

Zhou, L.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[Crossref]

IEEE J. Photon. Technol. Lett. (1)

W. Ng, T. D. Rockwood, G. A. Sefler, and G. C. Valley, “Demonstration of a large stretch-ratio (M = 41) photonic analog-to-digital converter with 8 ENOB for an input signal bandwidth of 10 GHz,” IEEE J. Photon. Technol. Lett. 24(14), 1185–1187 (2012).
[Crossref]

IEEE J. Quantum Electron. (3)

K. W. DeLong, D. N. Fittinghoff, and R. Trebino, “Practical issues in ultrashort-laser-pulse measurement using frequency-resolved optical gating,” IEEE J. Quantum Electron. 32(7), 1253–1264 (1996).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[Crossref]

L. Kh. Mouradian, F. Louradour, V. Messager, A. Barthélémy, and C. Froehly, “Spectro-temporal imaging of femtosecond events,” IEEE J. Quantum Electron. 36(7), 795–801 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. Lett. (1)

B. E. Van Kuiken, N. Huse, H. Cho, M. L. Strader, M. S. Lynch, R. W. Schoenlein, and M. Khalil, “Probing the electronic structure of a photoexcited solar cell dye with transient x-ray absorption spectroscopy,” J. Phys. Chem. Lett. 3, 1695–1700 (2012).

Nat. Photonics (1)

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Nature (2)

C. I. Blaga, J. Xu, A. D. DiChiara, E. Sistrunk, K. Zhang, P. Agostini, T. A. Miller, L. F. DiMauro, and C. D. Lin, “Imaging ultrafast molecular dynamics with laser-induced electron diffraction,” Nature 483(7388), 194–197 (2012).
[Crossref] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Zeytunyan, A. Muradyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Generation of broadband similaritons for complete characterization of femtosecond pulses,” Opt. Commun. 284(15), 3742–3747 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Rev. Sci. Instrum. (1)

D. J. Kane, R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68(9), 3277–3295 (1997).
[Crossref]

Other (2)

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (John Wiley & Sons, 2002).

D. Shayovitz, H. Herrmann, W. Sohler, R. Ricken, C. Silberhorn, and D. M. Marom, “Coherent detection of phase modulated ultrashort optical pulses using time-to-space conversion at 1.55μm,” in CLEO:2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu2I.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Time-to-space conversion concept. Time domain information is converted to a spatial image with the temporal coordinate mapped directly to a spatial coordinate: Δx = (c/α)Δt, where c is the speed of light and α is the dispersion parameter (see Eq. (1). Note that in our experimental setup the signal and reference beams propagated collinearly in the nonlinear crystal, whereas here they are shown at crossed angles for clarity.
Fig. 2
Fig. 2 Full-field measurement time-to-space conversion experimental setup. (a) Overall setup (MLL, mode-locked laser; OPO, optical parametric oscillator; SFG, sum-frequency generation); note that the filtered residual pump beam is incident on the camera at a small angle from above i.e. from out of the plane of the paper. (b) Linear phase modulation block. (c) Quadratic phase modulation block. (d) Time-to-space conversion block (f, Fourier lens; PPLN, periodically-poled lithium niobate). (e) Spectral filtering block for generating the interferogram reference plane wave. The SFG and filtered residual pump spectra are also shown.
Fig. 3
Fig. 3 Pulse packet full-field measurement. (a) Time-to-space converted pulse packet with close-up of the interference fringes. (b) Spatial frequency spectrum of the pulse packet with SSB filter indicated. (c) Inverse Fourier transform of the filtered image. (d) Recovered phase map. (e) Amplitude (blue) and phase (various colors) data taken from the region delimited by pink lines in (c) and (d). Five successive phase measurements are shown, each taken at a linearly increasing applied phase. The normalized field amplitude did not change significantly between successive measurements, so only one amplitude profile is shown here (taken from the same interferogram recording as the light blue line phase profile).
Fig. 4
Fig. 4 Chirped pulse full-field measurement. (a) Time-to-space converted negatively chirped pulse interferogram. (b) Spatial frequency spectrum of pulse image. (c) SSB filtered image. (d) Recovered phase map showing quadratic phase variation over the pulse envelope. (e) Pulse field amplitude (blue) and phase (red) with a FWHM pulse duration of ~1.5 ps and chirp parameter of −2. Note that the distortion of the pulse shape seen in (c) and (e) is believed to be due to spatial distortions and spatio-temporal coupling in the pulse stretcher.
Fig. 5
Fig. 5 Measured FWHM pulse duration (blue) and chirp (red) with varying pulse stretcher grating - lens offset, showing Gaussian beam radius evolution and linear fits respectively. The measured chirp clearly shows a linear variation with grating - lens offset. The grating - lens offset zero point (pulse stretcher null position) was determined by the fit to the pulse duration measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U out ( x,t )=w( c( t t 0 ) α )w( ct α )s( αx c t 0 )r( αx c )exp( j( ω S + ω R )t )

Metrics