Abstract

We present a technique which allows us to generate two parallel interferograms with phase shifts of π/2 using a Cyclic Shear Interferometer (CSI) and a polarizing splitter. Because of the use of a CSI, we obtain the derivative phase data map directly, due to its configuration, it is immune to vibrations because the reference wavefront and the object wavefront have a common path; the shearing interferometer is insensitive to temperature and vibration. To obtain the optical phase data map, two interferograms are generated by collocating a polarizing device at the output of the CSI. The optical phase was processed using a Vargas-Quiroga algorithm. Related experimental results obtained for dynamic microscopic transparent samples are presented.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
    [CrossRef]
  2. J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
    [CrossRef]
  3. M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
    [CrossRef]
  4. J. E. Millerd and J. C. Wyant, “Simultaneous phase-shifting Fizeau interferometer,” U.S. Patent 7,057,738 B2 (2006).
  5. B. Barrientos García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38(28), 5944–5947 (1999).
    [CrossRef] [PubMed]
  6. B. Barrientos-García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999).
    [CrossRef]
  7. J. C. Wyant, “Dynamic interferometry,” Opt. Photon. News 14(4), 36–41 (2003).
    [CrossRef]
  8. T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47(26), 4787–4792 (2008).
    [CrossRef] [PubMed]
  9. N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
    [CrossRef]
  10. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19(3), 1930–1935 (2011).
    [CrossRef] [PubMed]
  11. Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
    [CrossRef]
  12. C. Ai and J. C. Wyant, “Effect of piezoelectric transducer nonlinearity on phase shift interferometry,” Appl. Opt. 26(6), 1112–1116 (1987).
    [CrossRef] [PubMed]
  13. Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24(18), 3049–3052 (1985).
    [CrossRef] [PubMed]
  14. O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).
  15. J. Vargas, J. A. Quiroga, C. O. S. Sorzano, J. C. Estrada, and J. M. Carazo, “Two-step interferometry by a regularized optical flow algorithm,” Opt. Lett. 36(17), 3485–3487 (2011).
    [CrossRef] [PubMed]
  16. J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003).
    [CrossRef]
  17. J. Min, B. Yao, P. Gao, R. Guo, J. Zheng, and T. Ye, “Parallel phase-shifting interferometry based on Michelson-like architecture,” Appl. Opt. 49(34), 6612–6616 (2010).
    [CrossRef] [PubMed]
  18. A.-H. Phan, M. L. Piao, J.-H. Park, and N. Kim, “Error analysis in parallel two-step phase-shifting method,” Appl. Opt. 52(11), 2385–2393 (2013).
    [CrossRef] [PubMed]
  19. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
    [CrossRef] [PubMed]
  20. P. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (John Wiley, 2001).
  21. W. Steinchen and L. X. Yang, Digital Shearography; Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, 2003).
  22. T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116(1–3), 31–35 (1995).
    [CrossRef]
  23. B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
    [CrossRef]
  24. N.-I. Toto-Arellano, A. Martínez-García, G. Rodríguez-Zurita, J. A. Rayas-Álvarez, and A. Montes-Perez, “Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer,” Appl. Opt. 49(33), 6402–6408 (2010).
    [CrossRef] [PubMed]
  25. J. Márquez-Luna, “Técnicas de colecta y preservación de insectos,” Bol. Soc. Entomol. Aragonesa 37, 385–408 (2005).
  26. I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
    [CrossRef] [PubMed]
  27. H. Pham, H. Ding, N. Sobh, M. Do, S. Patel, and G. Popescu, “Off-axis quantitative phase imaging processing using CUDA: toward real-time applications,” Biomed. Opt. Express 2(7), 1781–1793 (2011).
    [CrossRef] [PubMed]
  28. V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
    [CrossRef]

2013 (2)

O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).

A.-H. Phan, M. L. Piao, J.-H. Park, and N. Kim, “Error analysis in parallel two-step phase-shifting method,” Appl. Opt. 52(11), 2385–2393 (2013).
[CrossRef] [PubMed]

2012 (1)

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

2009 (1)

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

2008 (2)

T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47(26), 4787–4792 (2008).
[CrossRef] [PubMed]

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

2006 (2)

B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
[CrossRef]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31(10), 1414–1416 (2006).
[CrossRef] [PubMed]

2005 (2)

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

J. Márquez-Luna, “Técnicas de colecta y preservación de insectos,” Bol. Soc. Entomol. Aragonesa 37, 385–408 (2005).

2004 (1)

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

2003 (2)

J. C. Wyant, “Dynamic interferometry,” Opt. Photon. News 14(4), 36–41 (2003).
[CrossRef]

J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003).
[CrossRef]

1999 (3)

B. Barrientos García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38(28), 5944–5947 (1999).
[CrossRef] [PubMed]

B. Barrientos-García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999).
[CrossRef]

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

1995 (1)

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116(1–3), 31–35 (1995).
[CrossRef]

1987 (1)

1985 (1)

Ai, C.

Barbul, A.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Barrientos García, B.

Barrientos-García, B.

B. Barrientos-García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999).
[CrossRef]

Bhaduri, B.

B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
[CrossRef]

Brock, N.

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Cai, L. Z.

Carazo, J. M.

Chen, J.

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Cheng, Y.-Y.

Ding, H.

Do, M.

Dong, G. Y.

Estrada, J. C.

Gao, P.

García, J.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Girshovitz, P.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Guo, R.

Harder, I.

Hayes, J.

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Karimi, P. M.

O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).

Kiire, T.

Kim, N.

Korenstein, R.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Kothiyal, M. P.

B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
[CrossRef]

Liu, H.

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Mantel, K.

Márquez-Luna, J.

J. Márquez-Luna, “Técnicas de colecta y preservación de insectos,” Bol. Soc. Entomol. Aragonesa 37, 385–408 (2005).

Martínez-García, A.

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

N.-I. Toto-Arellano, A. Martínez-García, G. Rodríguez-Zurita, J. A. Rayas-Álvarez, and A. Montes-Perez, “Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer,” Appl. Opt. 49(33), 6402–6408 (2010).
[CrossRef] [PubMed]

Meneses-Fabian, C.

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

Meng, X. F.

Mico, V.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Millerd, J.

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

Millerd, J. E.

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Min, J.

Mohan, N. K.

B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
[CrossRef]

Montes-Perez, A.

Montes-Pérez, A.

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

Moore, A. J.

Morris, M. N.

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

Nakadate, S.

Nercissian, V.

Nevo, U.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Ng, T. W.

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116(1–3), 31–35 (1995).
[CrossRef]

North-Morris, M.

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Novak, M.

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Nyakang, O. E.

O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).

Park, J.-H.

Patel, S.

Pérez-López, C.

Pham, H.

Phan, A.-H.

Piao, M. L.

Popescu, G.

Quiroga, J.

J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003).
[CrossRef]

Quiroga, J. A.

Rayas-Álvarez, J. A.

Rodríguez Zurita, G.

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

Rodriguez-Zurita, G.

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

Rodríguez-Zurita, G.

Rurimo, G. K.

O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).

Saif, B.

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

Serrano-García, D. I.

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

Servin, M.

J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003).
[CrossRef]

Shaked, N. T.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Shen, X. X.

Shibuya, M.

Shock, I.

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

Sobh, N.

Sorzano, C. O. S.

Toto-Arellano, N. I.

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

Toto-Arellano, N.-I.

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

N.-I. Toto-Arellano, A. Martínez-García, G. Rodríguez-Zurita, J. A. Rayas-Álvarez, and A. Montes-Perez, “Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer,” Appl. Opt. 49(33), 6402–6408 (2010).
[CrossRef] [PubMed]

Tschudi, T.

Vargas, J.

Vázquez-Castillo, J. F.

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

Wang, L.

Wang, Y. R.

Wyant, J.

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

Wyant, J. C.

Xiao, Y.

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Xu, X. F.

Yang, X. L.

Yao, B.

Ye, T.

Zalevsky, Z.

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

Zheng, J.

Zhu, R.

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Zhu, Y.

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Appl. Opt. (7)

Y.-Y. Cheng and J. C. Wyant, “Phase shifter calibration in phase-shifting interferometry,” Appl. Opt. 24(18), 3049–3052 (1985).
[CrossRef] [PubMed]

C. Ai and J. C. Wyant, “Effect of piezoelectric transducer nonlinearity on phase shift interferometry,” Appl. Opt. 26(6), 1112–1116 (1987).
[CrossRef] [PubMed]

B. Barrientos García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Transient deformation measurement with electronic speckle pattern interferometry by use of a holographic optical element for spatial phase stepping,” Appl. Opt. 38(28), 5944–5947 (1999).
[CrossRef] [PubMed]

T. Kiire, S. Nakadate, and M. Shibuya, “Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating,” Appl. Opt. 47(26), 4787–4792 (2008).
[CrossRef] [PubMed]

N.-I. Toto-Arellano, A. Martínez-García, G. Rodríguez-Zurita, J. A. Rayas-Álvarez, and A. Montes-Perez, “Slope measurement of a phase object using a polarizing phase-shifting high-frequency Ronchi grating interferometer,” Appl. Opt. 49(33), 6402–6408 (2010).
[CrossRef] [PubMed]

J. Min, B. Yao, P. Gao, R. Guo, J. Zheng, and T. Ye, “Parallel phase-shifting interferometry based on Michelson-like architecture,” Appl. Opt. 49(34), 6612–6616 (2010).
[CrossRef] [PubMed]

A.-H. Phan, M. L. Piao, J.-H. Park, and N. Kim, “Error analysis in parallel two-step phase-shifting method,” Appl. Opt. 52(11), 2385–2393 (2013).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Bol. Soc. Entomol. Aragonesa (1)

J. Márquez-Luna, “Técnicas de colecta y preservación de insectos,” Bol. Soc. Entomol. Aragonesa 37, 385–408 (2005).

Int. J. Optoelectron. Eng. (1)

O. E. Nyakang, G. K. Rurimo, and P. M. Karimi, “Optical phase shift measurements in interferometry,” Int. J. Optoelectron. Eng. 3(2), 13–18 (2013).

J. Biomed. Opt. (1)

I. Shock, A. Barbul, P. Girshovitz, U. Nevo, R. Korenstein, and N. T. Shaked, “Optical phase nanoscopy in red blood cells using low-coherence spectroscopy,” J. Biomed. Opt. 17(10), 101509 (2012).
[CrossRef] [PubMed]

J. Opt. (1)

N.-I. Toto-Arellano, D. I. Serrano-García, A. Martínez-García, G. Rodríguez Zurita, and A. Montes-Pérez, “4D profile of phase objects through the use of a simultaneous phase shifting quasi-common path interferometer,” J. Opt. 13(11), 115502 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

N. I. Toto-Arellano, G. Rodriguez-Zurita, C. Meneses-Fabian, and J. F. Vázquez-Castillo, “A single-shot phase-shifting radial-shearing interferometer,” J. Opt. A, Pure Appl. Opt. 11(4), 045704 (2009).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Zhu, J. Chen, H. Liu, R. Zhu, and Y. Xiao, “Nonlinear calibrating for phase-shifting adapter with three PZTs,” Microw. Opt. Technol. Lett. 23(4), 209–212 (1999).
[CrossRef]

Opt. Commun. (3)

V. Mico, Z. Zalevsky, and J. García, “Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution,” Opt. Commun. 281(17), 4273–4281 (2008).
[CrossRef]

T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116(1–3), 31–35 (1995).
[CrossRef]

J. Quiroga and M. Servin, “Isotropic n-dimensional fringe pattern normalization,” Opt. Commun. 224(4–6), 221–227 (2003).
[CrossRef]

Opt. Eng. (1)

B. Barrientos-García, A. J. Moore, C. Pérez-López, L. Wang, and T. Tschudi, “Spatial phase-stepped interferometry using a holographic optical element,” Opt. Eng. 38(12), 2069–2074 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

B. Bhaduri, N. K. Mohan, and M. P. Kothiyal, “A dual-function ESPI system for the measurement of out-of-plane displacement and slope,” Opt. Lasers Eng. 44(6), 637–644 (2006).
[CrossRef]

Opt. Lett. (2)

Opt. Photon. News (1)

J. C. Wyant, “Dynamic interferometry,” Opt. Photon. News 14(4), 36–41 (2003).
[CrossRef]

Proc. SPIE (2)

J. E. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE 5531, 304–314 (2004).
[CrossRef]

M. N. Morris, J. Millerd, N. Brock, J. Hayes, and B. Saif, “Dynamic phase-shifting electronic speckle pattern interferometer,” Proc. SPIE 5869, 58691B (2005).
[CrossRef]

Other (3)

J. E. Millerd and J. C. Wyant, “Simultaneous phase-shifting Fizeau interferometer,” U.S. Patent 7,057,738 B2 (2006).

P. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (John Wiley, 2001).

W. Steinchen and L. X. Yang, Digital Shearography; Theory and Application of Digital Speckle Pattern Shearing Interferometry (SPIE Press, 2003).

Supplementary Material (2)

» Media 1: AVI (1577 KB)     
» Media 2: AVI (61425 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Parallel phase shifting interferometry. Li: lenses. MO: Microscope objective(40X). HWP: Half Wave Plate. P: polarizer filters. Mi: Mirrors. Δx0: Adjustment of mirrors. x0: beam separation. x1: shearograms separation. PBS: polarizer beam splitter. QWP: Quarter Wave Plate. NPBS: nonpolarizer beam splitter. Ii(x,y): Interference patterns.

Fig. 2
Fig. 2

Experimental results. (a) Characteristic pattern with relative phase shifts of π/2. (b) Interference patterns generated for the system with shear in the y direction; the circle shows one of 3 microparticles of diameter d 1 0.5 mm . (c) Parallel representative patterns of a phase fluid ( d 1 0.5 mm ). (d) Parallel representative patterns of dynamic phase induced by the change of refraction index induced by a candle flame. r 0 2 mm .

Fig. 3
Fig. 3

Inorganic Samples. Experimental results of microparticles. (a) Parallel shearograms captured in single shot. (b) Slope.

Fig. 4
Fig. 4

Organic samples glycerinated gelatin on microscope slide. (a) Parallel shearograms captured in single shot. (b) Slope.

Fig. 5
Fig. 5

Organic samples: phase change induced by the microarthropod Collembola. (a) Parallel shearograms captured in single shot. (b) Slope.

Fig. 6
Fig. 6

Dynamic transparent sample. (a) Parallel shearograms. (b) Slope profile of a flame varying in time (Media 1).

Fig. 7
Fig. 7

Typical shearograms for radial shear obtained in a single shot. (a) Parallel shearograms of an aberrated wavefront. (b) Radial slope.

Fig. 8
Fig. 8

Phase changes introduced by RBC smeared on a microscope slide. (a) Parallel shearograms captured in single shot (Media 2). (b)-(c) OPD. (d) Single reconstruction of RBC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I 1 (x,y)= A 0 + A 1 sin[ ϕ(x,y) y ], I 2 (x,y)= A 0 + A 1 cos[ ϕ(x,y) y ],
ϕ( x,y ) y = 2π λ [ sinθ du y +(1+cosθ) w y ]Δy,
ϕ( x,y ) y = 4π λ [ w(x,y) y ]Δ y 0 .

Metrics