Abstract

We present a novel approach for evaluation of position and orientation of geometric shapes from scattered time-resolved data. Traditionally, imaging systems treat scattering as unwanted and are designed to mitigate the effects. Instead, we show here that scattering can be exploited by implementing a system based on a femtosecond laser and a streak camera. The result is accurate estimation of object pose, which is a fundamental tool in analysis of complex scenarios and plays an important role in our understanding of physical phenomena. Here, we experimentally show that for a given geometry, a single incident illumination point yields enough information for pose estimation and tracking after multiple scattering events. Our technique can be used for single-shot imaging behind walls or through turbid media.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light

Nikhil Naik, Christopher Barsi, Andreas Velten, and Ramesh Raskar
J. Opt. Soc. Am. A 31(5) 957-963 (2014)

CT imaging of diffuse medium by time-resolved measurement of backscattered light

Takeshi Namita, Yuji Kato, and Koichi Shimizu
Appl. Opt. 48(10) D208-D217 (2009)

Fringe inverse videogrammetry based on global pose estimation

Yong-Liang Xiao, Xianyu Su, and Wenjing Chen
Appl. Opt. 50(29) 5630-5638 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Roggeman, B. M. Welsh, and B. R. Hunt, Imaging Through Turbulence (CRC Press, 1996).
  2. S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
    [Crossref]
  3. E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
    [Crossref]
  4. J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
    [Crossref] [PubMed]
  5. P. Heckman and R. T. Hodgson, “Underwater optical range gating,” IEEE J. Quantum Electron. 3, 445–448 (1967).
    [Crossref]
  6. I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).
    [Crossref]
  7. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref] [PubMed]
  8. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [Crossref] [PubMed]
  9. H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [Crossref]
  10. A. Buffington, F. S. Crawford, R. A. Muller, A. J. Schwemin, and R. G. Smits, “Correction of atmospheric distortion with an image-sharpening telescope,” J. Opt. Soc. Am. 67, 298–303 (1977).
    [Crossref]
  11. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
    [Crossref]
  12. D. Brown, V. B. Fleurov, P. Carroll, and C. M. Lawson, “Coherence-based imaging through turbid media by use of degenerate four-wave mixing in thin liquid-crystal films and photorefractives,” Appl. Opt. 37, 5306–5312 (1998).
    [Crossref]
  13. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [Crossref] [PubMed]
  14. B. Danielson and C. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
    [Crossref] [PubMed]
  15. J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
    [Crossref] [PubMed]
  16. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950–952 (1993).
    [Crossref] [PubMed]
  17. Y. Pan, R. Birngruber, and R. Engelhardt, “Contrast limits of coherence-gated imaging in scattering media,” Appl. Opt. 36, 2979–2983 (1997).
    [Crossref] [PubMed]
  18. A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).
  19. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
    [Crossref]
  20. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
    [Crossref] [PubMed]
  21. N. Naik, A. Velten, C. Barsi, and R. Raskar, “Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light,” J. Opt. Soc. Am. A 31, 957–963 (2014).
    [Crossref]
  22. Q. Wang, L. Wang, and J. F. Sun, “Rotation-invariant target recognition in ladar range imagery using model matching approach,” Opt. Express 18, 15349–15360 (2010).
    [Crossref] [PubMed]
  23. R. D. Nieves and W. D. Reynolds, “Three-dimensional transformation for automatic target recognition using lidar data,” Proc. SPIE 7684, 76840Y (2010).
    [Crossref]
  24. D. Lv, J.-F. Sun, Q. Li, and Q. Wang, “3D pose estimation of ground rigid target based on ladar range image,” Appl. Opt. 52, 8073–8081 (2013).
    [Crossref]
  25. S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
    [Crossref] [PubMed]
  26. C. S. L. Chun and F. A. Sadjadi, “Target recognition study using polarimetric laser radar,” Proc. SPIE 5426, 274–284 (2004).
    [Crossref]
  27. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence lifetime based tomography for turbid media,” Opt. Lett. 30, 3347–3349 (2005).
    [Crossref]
  28. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, and D. T. Delpy, “Simultaneous reconstruction of absorption and scattering images by multichannel measurement of purely temporal data,” Opt. Lett. 24, 534–536 (1999).
    [Crossref]
  29. P. J. Besl and N. D. MacKay, “A method for registration of 3-D shapes,” Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
    [Crossref]
  30. Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” International Conference on Robotics and Automation 3, 2724–2729 (1991).
  31. L. Bottou and Y. Le Cun, “Large scale online learning,” Advances in Neural Information Processing Systems (2004), Vol. 16.
  32. S. S. Gorthi, D. Schaak, and E. Schonbrun, “Fluorescence imaging of flowing cells using a temporal coded excitation,” Opt. Express 21, 5164–5170 (2013).
    [Crossref] [PubMed]
  33. S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
    [Crossref] [PubMed]
  34. R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.
  35. M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
    [Crossref]
  36. L. F. Gillespie, “Apparent illumination as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. 56, 883–887 (1966).
    [Crossref]
  37. M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
    [Crossref]

2014 (2)

2013 (3)

2012 (3)

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

2010 (4)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

Q. Wang, L. Wang, and J. F. Sun, “Rotation-invariant target recognition in ladar range imagery using model matching approach,” Opt. Express 18, 15349–15360 (2010).
[Crossref] [PubMed]

R. D. Nieves and W. D. Reynolds, “Three-dimensional transformation for automatic target recognition using lidar data,” Proc. SPIE 7684, 76840Y (2010).
[Crossref]

2008 (1)

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

C. S. L. Chun and F. A. Sadjadi, “Target recognition study using polarimetric laser radar,” Proc. SPIE 5426, 274–284 (2004).
[Crossref]

1999 (2)

1998 (1)

1997 (1)

1993 (1)

1992 (1)

P. J. Besl and N. D. MacKay, “A method for registration of 3-D shapes,” Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[Crossref]

1991 (4)

Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” International Conference on Robotics and Automation 3, 2724–2729 (1991).

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[Crossref] [PubMed]

B. Danielson and C. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975–2979 (1991).
[Crossref] [PubMed]

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
[Crossref]

1990 (2)

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).
[Crossref]

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

1977 (1)

1967 (1)

P. Heckman and R. T. Hodgson, “Underwater optical range gating,” IEEE J. Quantum Electron. 3, 445–448 (1967).
[Crossref]

1966 (1)

1953 (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Abraham, E.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

Arridge, S. R.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
[Crossref]

Babcock, H. W.

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Bacskai, B. J.

Baraniuk, R. G.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Bardagjy, A.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Barsi, C.

Bawendi, M.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Bawendi, M. G.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

Besl, P. J.

P. J. Besl and N. D. MacKay, “A method for registration of 3-D shapes,” Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[Crossref]

Birngruber, R.

Boas, D. A.

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

Boisrobert, C.

Bottou, L.

L. Bottou and Y. Le Cun, “Large scale online learning,” Advances in Neural Information Processing Systems (2004), Vol. 16.

Brown, D.

Buffington, A.

Carroll, P.

Carron, I.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Chardon, G.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Chen, H.

Chen, Y.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “Two-dimensional imaging through diffusing media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
[Crossref] [PubMed]

Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” International Conference on Robotics and Automation 3, 2724–2729 (1991).

Chun, C. S. L.

C. S. L. Chun and F. A. Sadjadi, “Target recognition study using polarimetric laser radar,” Proc. SPIE 5426, 274–284 (2004).
[Crossref]

Cope, M.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
[Crossref]

Cotte, M.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Crawford, F. S.

Danielson, B.

Daudet, L.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Delagnes, J. C.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

Delpy, D. T.

Dik, J.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Dilworth, D.

Dunn, A. K.

Engelhardt, R.

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

Fleurov, V. B.

Freund, I.

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).
[Crossref]

Fry, M. E.

Fujimoto, J. G.

Gigan, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Gillespie, L. F.

Gorthi, S. S.

Gupta, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Gupta, O.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

Hebden, J. C.

Heckman, P.

P. Heckman and R. T. Hodgson, “Underwater optical range gating,” IEEE J. Quantum Electron. 3, 445–448 (1967).
[Crossref]

Hee, M. R.

Henriques, R.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

Herbert, S.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

Hillman, E. M. C.

Hodgson, R. T.

P. Heckman and R. T. Hodgson, “Underwater optical range gating,” IEEE J. Quantum Electron. 3, 445–448 (1967).
[Crossref]

Hong, S.-H.

Hunt, B. R.

M. C. Roggeman, B. M. Welsh, and B. R. Hunt, Imaging Through Turbulence (CRC Press, 1996).

Izatt, J. A.

Jacobson, J. M.

Janssens, K.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Javidi, B.

Katz, O.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Koch, M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Kruger, R. A.

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

Kumar, A. T. N.

Laurenzis, M.

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

Lawson, C. M.

Lawson, E.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Le Cun, Y.

L. Bottou and Y. Le Cun, “Large scale online learning,” Advances in Neural Information Processing Systems (2004), Vol. 16.

Leith, E.

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Li, Q.

Liutkus, A.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Lopez, J.

Lv, D.

MacKay, N. D.

P. J. Besl and N. D. MacKay, “A method for registration of 3-D shapes,” Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[Crossref]

Martina, D.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Medioni, G.

Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” International Conference on Robotics and Automation 3, 2724–2729 (1991).

Mittleman, D. M.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Mosk, A. P.

Mounaix, P.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

Muller, R. A.

Naik, N.

Neelamani, R.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Nieves, R. D.

R. D. Nieves and W. D. Reynolds, “Three-dimensional transformation for automatic target recognition using lidar data,” Proc. SPIE 7684, 76840Y (2010).
[Crossref]

Pan, Y.

Pandharkar, R.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

Raskar, R.

N. Naik, A. Velten, C. Barsi, and R. Raskar, “Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light,” J. Opt. Soc. Am. A 31, 957–963 (2014).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Reynolds, W. D.

R. D. Nieves and W. D. Reynolds, “Three-dimensional transformation for automatic target recognition using lidar data,” Proc. SPIE 7684, 76840Y (2010).
[Crossref]

Rickers, K.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Roggeman, M. C.

M. C. Roggeman, B. M. Welsh, and B. R. Hunt, Imaging Through Turbulence (CRC Press, 1996).

Rudd, J. V.

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

Sadjadi, F. A.

C. S. L. Chun and F. A. Sadjadi, “Target recognition study using polarimetric laser radar,” Proc. SPIE 5426, 274–284 (2004).
[Crossref]

Schaak, D.

Schmidt, F. E. W.

Schonbrun, E.

Schweiger, M.

Schwemin, A. J.

Skoch, J.

Smits, R. G.

Soares, H.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

Sun, J. F.

Sun, J.-F.

Swanson, E. A.

Valdmanis, J.

Van der Loeff, L.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Van der Snickt, G.

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

van der Zee, P.

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
[Crossref]

Veeraraghavan, A.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

Vellekoop, I. M.

Velten, A.

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

N. Naik, A. Velten, C. Barsi, and R. Raskar, “Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light,” J. Opt. Soc. Am. A 31, 957–963 (2014).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

Wang, L.

Wang, Q.

Welsh, B. M.

M. C. Roggeman, B. M. Welsh, and B. R. Hunt, Imaging Through Turbulence (CRC Press, 1996).

Willwacher, T.

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012).
[Crossref] [PubMed]

Younus, A.

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

Zimmer, C.

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

Anal. Chem. (1)

J. Dik, K. Janssens, G. Van der Snickt, L. Van der Loeff, K. Rickers, and M. Cotte, “Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based x-ray fluorescence elemental mapping,” Anal. Chem. 80, 6436–6442 (2008).
[Crossref] [PubMed]

Appl. Opt. (4)

Appl. Phys. A (1)

E. Abraham, A. Younus, J. C. Delagnes, and P. Mounaix, “Non-invasive investiagation of art paintings by terahertz imaging,” Appl. Phys. A 100, 585–590 (2010).
[Crossref]

Appl. Phys. B (1)

D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B 68, 1085–1094 (1999).
[Crossref]

IEEE J. Quantum Electron. (1)

P. Heckman and R. T. Hodgson, “Underwater optical range gating,” IEEE J. Quantum Electron. 3, 445–448 (1967).
[Crossref]

International Conference on Robotics and Automation (1)

Y. Chen and G. Medioni, “Object modeling by registration of multiple range images,” International Conference on Robotics and Automation 3, 2724–2729 (1991).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

J. C. Hebden and R. A. Kruger, “Transillumination imaging performance: a time-of-flight imaging system,” Med. Phys. 17, 351–356 (1990).
[Crossref] [PubMed]

Microsc. Microanal. (1)

S. Herbert, H. Soares, C. Zimmer, and R. Henriques, “Single-molecule localization super-resolution microscopy: deeper and faster,” Microsc. Microanal. 18, 1419–1429 (2012).
[Crossref] [PubMed]

Nat. Commun. (2)

A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three dimensional shape around a corner using ultra-fast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref] [PubMed]

Opt. Eng. (1)

M. Laurenzis and A. Velten, “Nonline-of-sight laser gated viewing of scattered photons,” Opt. Eng. 53(2), 023102 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Physica A (1)

I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990).
[Crossref]

Proc. SPIE (4)

S. R. Arridge, P. van der Zee, M. Cope, and D. T. Delpy, “Reconstruction methods for infra-red absorption imaging,” Proc. SPIE 1431, 204–215 (1991).
[Crossref]

R. D. Nieves and W. D. Reynolds, “Three-dimensional transformation for automatic target recognition using lidar data,” Proc. SPIE 7684, 76840Y (2010).
[Crossref]

M. Laurenzis and A. Velten, “Non-line-of-sight active imaging of scattered photons,” Proc. SPIE 8897, 889706 (2013).
[Crossref]

C. S. L. Chun and F. A. Sadjadi, “Target recognition study using polarimetric laser radar,” Proc. SPIE 5426, 274–284 (2004).
[Crossref]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[Crossref]

Trans. Pattern Anal. Mach. Intell. (1)

P. J. Besl and N. D. MacKay, “A method for registration of 3-D shapes,” Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[Crossref]

Other (4)

L. Bottou and Y. Le Cun, “Large scale online learning,” Advances in Neural Information Processing Systems (2004), Vol. 16.

R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and R. Raskar, “Estimating Motion and size of moving non-line-of-sight objects in cluttered environments,” International Conference on Computer Vision and Pattern Recognition (CVPR) (2011), pp. 265–272.

A. Liutkus, D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, “Imaging with nature: A universal analog compressive imager using a multiply scattering medium,” arXiv:1309.0425 (2013).

M. C. Roggeman, B. M. Welsh, and B. R. Hunt, Imaging Through Turbulence (CRC Press, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Light propagation (left) and synthesized streak camera image (right). Coherent light (A) hits the diffuser in one position, scattered behind the diffuser (B) hits the object, scattered once again from many positions (C), hits the diffuser a second time, and reaches the streak camera (D) which measures one spatial line over time, generating a 2D image. Window: 1ns × (≈)10 cm.

Fig. 2
Fig. 2

Left: Pattern of light ray traveling from the laser L, through a diffuser D at point dl, striking an object at point w, bouncing towards the diffuser at point dc, and captured by the camera. Right: Spatial orientation of objects for the three Euler’s angles.

Fig. 3
Fig. 3

Tracking of a rotating MIT banner from scattered light. Row 1: enlarged images. Row 2: synthesized noisy data, Row 3: recovered images, Row 4: real orientation of the banner, Row 5: calculated orientation. 180 images with 2 degrees change in ψ (in-plane angle) are synthesized and tracked using the proposed algorithm. Even though, the synthesized images have slight changes for different angles and high noise ratio (35 SNR), we were able to track the rotation with very high accuracy. Notice the ambiguity in the current setup which relates to higher error norm shown in the first row. The two graphs measure different quantities in different units but overlaid for compactness. Errors appear when the laser position does not hold enough meaningful information to infer the pose. Window: 1ns × (≈)10 cm.

Fig. 4
Fig. 4

The human model behind the diffuser. A photograph of the experiment from the model’s point of view.

Fig. 5
Fig. 5

Scene setup for a human-like model. We used several laser spots for different positions and orientations of the model in space. Bottom row: raw images captured by the streak camera (positions 1,2 and 3 from right to left). The top-left bright spot is a physical reference beam used for spatio-temporal alignment. Window: 1ns × (≈)10 cm. The source is split into two beams with a beamsplitter. The small focused spot in the upper-left corner of each measurement is the calibration beam, used to normalize the global intensity of the data and correct for any timing jitter. The second beam scatters through the diffuser toward the object, and is scanned across the diffuser with a galvo mirror to generate multiple streak images.

Fig. 6
Fig. 6

Convergence of the algorithm for laser position 3 (see Fig. 5). First row: angle A. Second row: angle B. From right to left: initial iteration, 5th iteration, 10th iteration, final generated model, and real captured image. A threshold was added to remove noise. Window: 1ns × (≈)10 cm.

Fig. 7
Fig. 7

Convergence of the algorithm for laser position 1 (see Fig. 5). First row: translation C. Second row: translation D. From right to left: initial iteration, 5th iteration, 10th iteration, final generated model, and real captured image. A threshold was added to remove noise. Window: 1ns × (≈)10 cm.

Tables (4)

Tables Icon

Algorithm 1: Localization algorithm

Tables Icon

Table 2 Depth (X), in planar (YZ), and angular convergence for the synthesized MIT banner given 2352 experiments. Each column in the table represent a different translation, and each row a different orientation. In each cell, we averaged the mean error of 48 evaluated distances or angles (16 different laser spots locations times 3 different SNR levels), and the percentage of experiments that converged to a minima near the correct solution (right member of each cell). Depth (X) can be recovered with high accuracy, and in-plane translations (YZ) can be recovered in most circumstances. Angular changes which have strong spatial shift (ψ for the MIT banner) are found with high accuracy, while other rotations are harder to evaluate.

Tables Icon

Table 3 Translation (in mm) and angular (in degrees) of real experiments. Distances and angles are measured with reference to one spatial setup (R). While not mandatory, it provides an additional alignment. In the top table, we see that one laser position is sufficient for angle evaluation to within 1–2°, and from the tables below, we learn that depth (X) can evaluated with high accuracy, with in-plane movements (YZ) are harder to find.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I l ( d c , t ) = g ( d l , w , d c ) f a ( w ) δ ( c t | d l w | | w d c | ) d w
g ( d l , w , d c ) = I 0 N ( η ) N ( ζ ) π cos α cos γ cos β cos δ r l 2 r c 2 ,
Θ = ( t x , t y , t z , θ , ϕ , ψ ) ,
Θ ( w ) = R × ( w 𝒞 ) + 𝒞 + t ¯ ,
Θ ( M ) = { Θ ( w ) } w M .
Θ ^ = argmin Θ l ρ ( I l ( d l , t ) , w π l ( Θ ( M ) ) 𝒮 l ( Θ ( w ) ) ,

Metrics