Abstract

Fast focusing scan over a large depth range is challenging in photoacoustic microscopic imaging. In this paper, a fast variable focus photoacoustic microscopy (VF-PAM) with a large range of imaging depth was presented by using an electrically tunable lens (ETL). The ETL controlled the divergence angle of the laser beam for fast and continuous focus-shifting in depth direction with the shifting time of 15 ms, and 2.82 mm focus-shifting range with a 1 µm shifting accuracy was achieved by combining the ETL with a 0.3 NA plan microscope objective lens. Carbon fibers imaging verified the depth imaging ability of the system, in vivo microvasculature of mouse ear and brain tissues of the mouse imaging further demonstrated the focusing scan ability in biomedical application. The fast VF-PAM system allows substantial shortening of the focus-shifting time, which will be more conducive to studying living biological tissue, and will promote the development of in vivo noninvasive PA depth imaging without mechanical scan.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hajireza, W. Shi, and R. J. Zemp, “Label-free in vivo fiber-based optical-resolution photoacoustic microscopy,” Opt. Lett. 36(20), 4107–4109 (2011).
    [CrossRef] [PubMed]
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. Y. Yuan, S. H. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
    [CrossRef]
  4. A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
    [CrossRef] [PubMed]
  5. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  6. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [CrossRef]
  7. Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy,” Opt. Express 20(7), 7555–7563 (2012).
    [CrossRef] [PubMed]
  8. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
    [CrossRef] [PubMed]
  9. Z. Y. Yang, J. H. Chen, J. J. Yao, R. Q. Lin, J. Meng, C. B. Liu, J. H. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
    [CrossRef] [PubMed]
  10. S. L. Jiao, M. S. Jiang, J. M. Hu, A. Fawzi, Q. F. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [CrossRef] [PubMed]
  11. G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
    [CrossRef] [PubMed]
  12. J. Y. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. H. He, and H. B. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
    [CrossRef] [PubMed]
  13. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  14. Z. L. Tan, Y. F. Liao, Y. B. Wu, Z. L. Tang, and R. K. Wang, “Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique,” Opt. Express 20(5), 5802–5808 (2012).
    [CrossRef] [PubMed]
  15. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  16. Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011).
    [CrossRef] [PubMed]
  17. S. H. Yang, F. Ye, and D. Xing, “Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express 20(9), 10370–10375 (2012).
    [CrossRef] [PubMed]
  18. C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
    [CrossRef] [PubMed]
  19. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  20. R. O. Esenaliev, I. V. Larina, K. V. Larin, D. J. Deyo, M. Motamedi, and D. S. Prough, “Optoacoustic technique for noninvasive monitoring of blood oxygenation: a feasibility study,” Appl. Opt. 41(22), 4722–4731 (2002).
    [CrossRef] [PubMed]
  21. J. Park, T. M. Cummins, M. Harrison, J. Lee, Q. F. Zhou, C.-L. Lien, and K. K. Shung, “High frequency photoacoustic imaging for in vivo visualizing blood flow of zebrafish heart,” Opt. Express 21(12), 14636–14642 (2013).
    [CrossRef] [PubMed]
  22. W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
    [CrossRef] [PubMed]
  23. Z. J. Chen, S. H. Yang, and D. Xing, “In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy,” Opt. Lett. 37(16), 3414–3416 (2012).
    [CrossRef] [PubMed]
  24. M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
    [CrossRef] [PubMed]
  25. P. Hajireza, A. Forbrich, and R. J. Zemp, “Multifocus optical-resolution photoacoustic microscopy using stimulated Raman scattering and chromatic aberration,” Opt. Lett. 38(15), 2711–2713 (2013).
    [CrossRef] [PubMed]
  26. G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
    [CrossRef] [PubMed]
  27. P. A. Kirkby, K. M. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).
    [CrossRef] [PubMed]
  28. B. W. Jiang, X. Q. Yang, Y. Y. Liu, Y. Deng, and Q. M. Luo, “Multiscale photoacoustic microscopy with continuously tunable resolution,” Opt. Lett. 39(13), 3939–3941 (2014).
    [CrossRef] [PubMed]
  29. L. Xi, C. L. Song, and H. B. Jiang, “Confocal photoacoustic microscopy using a single multifunctional lens,” Opt. Lett. 39(11), 3328–3331 (2014).
    [CrossRef] [PubMed]
  30. B. Soetikno, C. Yeh, S. Hu, Q. Zhong, K. Maslov, and L. V. Wang, “Contour-scanning optical-resolution photoacoustic microscopy,” Photonics West (2013).
  31. B. F. Grewe, F. F. Voigt, M. van ’t Hoff, and F. Helmchen, “Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens,” Biomed. Opt. Express 2(7), 2035–2046 (2011).
    [CrossRef] [PubMed]
  32. C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
    [CrossRef] [PubMed]

2014 (4)

2013 (5)

2012 (6)

2011 (3)

2010 (4)

2009 (3)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

2008 (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

2002 (1)

Bauer, A. Q.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Caravaca-Aguirre, A. M.

Carson, P. L.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Chen, J. H.

Chen, Z. J.

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Conkey, D. B.

Culver, J. P.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Cummins, T. M.

Deng, Y.

Deng, Z. L.

Deyo, D. J.

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Dong, W.

Dove, J. D.

Duemani Reddy, G.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Esenaliev, R. O.

Fawzi, A.

Fink, R.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Forbrich, A.

Fowlkes, J. B.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Girish, G.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Göbel, W.

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

Gong, H.

Grewe, B. F.

Guo, L. N.

Hajireza, P.

Harrison, M.

He, J. H.

Helmchen, F.

Hu, J. M.

Jiang, B. W.

Jiang, H. B.

Jiang, M. S.

Jiao, S. L.

Ju, H.

Kaplan, M. J.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Kelleher, K.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Kirkby, P. A.

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Larin, K. V.

Larina, I. V.

Lee, J.

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, X.

Liao, Y. F.

Lien, C.-L.

Lin, R. Q.

Liu, C. B.

Liu, Y. Y.

Luo, Q. M.

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Maslov, K.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Meng, J.

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Motamedi, M.

Murray, T. W.

Nasiriavanaki, M.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Park, J.

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Piestun, R.

Prough, D. S.

Puliafito, C. A.

Rajian, J. R.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Saggau, P.

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Shi, W.

Shung, K. K.

Silver, R. A.

Sobel, E. S.

Song, C. L.

Song, L.

Srinivas Nadella, K. M.

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Sun, Y.

Tan, Z. L.

Tang, Z. L.

van ’t Hoff, M.

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Voigt, F. F.

Wan, H. L.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Wang, L.

Wang, L. V.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X. D.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Wu, Y. B.

Xi, L.

Xia, J.

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Xia, Y.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

Xiang, L. Z.

Xiao, J. Y.

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xing, D.

Xu, G.

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

Yang, D. W.

Yang, J. H.

Yang, S. H.

Yang, X. Q.

Yang, Z. Y.

Yao, D.-K.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

Yao, J.

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[CrossRef] [PubMed]

Yao, J. J.

Yao, L.

Ye, F.

Yuan, Y.

Y. Yuan, S. H. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[CrossRef]

Zemp, R. J.

Zhang, C.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

Zhang, H. F.

S. L. Jiao, M. S. Jiang, J. M. Hu, A. Fawzi, Q. F. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Zhang, Y. S.

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

Zhou, Q. F.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yuan, S. H. Yang, and D. Xing, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer,” Appl. Phys. Lett. 100(2), 023702 (2012).
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (4)

G. Xu, J. R. Rajian, G. Girish, M. J. Kaplan, J. B. Fowlkes, P. L. Carson, and X. D. Wang, “Photoacoustic and ultrasound dual-modality imaging of human peripheral joints,” J. Biomed. Opt. 18(1), 010502 (2013).
[CrossRef] [PubMed]

C. Zhang, Y. S. Zhang, D.-K. Yao, Y. Xia, and L. V. Wang, “Label-free photoacoustic microscopy of cytochromes,” J. Biomed. Opt. 18(2), 020504 (2013).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, J. Yao, and L. V. Wang, “In vivo photoacoustic microscopy with 7.6-µm axial resolution using a commercial 125-MHz ultrasonic transducer,” J. Biomed. Opt. 17(11), 116016 (2012).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

W. Göbel and F. Helmchen, “New angles on neuronal dendrites in vivo,” J. Neurophysiol. 98(6), 3770–3779 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Neurosci. (1)

G. Duemani Reddy, K. Kelleher, R. Fink, and P. Saggau, “Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity,” Nat. Neurosci. 11(6), 713–720 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Opt. Express (11)

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[CrossRef] [PubMed]

S. L. Jiao, M. S. Jiang, J. M. Hu, A. Fawzi, Q. F. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[CrossRef] [PubMed]

P. A. Kirkby, K. M. Srinivas Nadella, and R. A. Silver, “A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy,” Opt. Express 18(13), 13720–13745 (2010).
[CrossRef] [PubMed]

J. Y. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. H. He, and H. B. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express 18(14), 14359–14365 (2010).
[CrossRef] [PubMed]

J. Park, T. M. Cummins, M. Harrison, J. Lee, Q. F. Zhou, C.-L. Lien, and K. K. Shung, “High frequency photoacoustic imaging for in vivo visualizing blood flow of zebrafish heart,” Opt. Express 21(12), 14636–14642 (2013).
[CrossRef] [PubMed]

Z. L. Tan, Y. F. Liao, Y. B. Wu, Z. L. Tang, and R. K. Wang, “Photoacoustic microscopy achieved by microcavity synchronous parallel acquisition technique,” Opt. Express 20(5), 5802–5808 (2012).
[CrossRef] [PubMed]

Z. L. Deng, X. Q. Yang, H. Gong, and Q. M. Luo, “Adaptive synthetic-aperture focusing technique for microvasculature imaging using photoacoustic microscopy,” Opt. Express 20(7), 7555–7563 (2012).
[CrossRef] [PubMed]

S. H. Yang, F. Ye, and D. Xing, “Intracellular label-free gold nanorods imaging with photoacoustic microscopy,” Opt. Express 20(9), 10370–10375 (2012).
[CrossRef] [PubMed]

A. M. Caravaca-Aguirre, D. B. Conkey, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, “High contrast three-dimensional photoacoustic imaging through scattering media by localized optical fluence enhancement,” Opt. Express 21(22), 26671–26676 (2013).
[CrossRef] [PubMed]

Z. Y. Yang, J. H. Chen, J. J. Yao, R. Q. Lin, J. Meng, C. B. Liu, J. H. Yang, X. Li, L. Wang, and L. Song, “Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo,” Opt. Express 22(2), 1500–1511 (2014).
[CrossRef] [PubMed]

Z. L. Tan, Z. L. Tang, Y. B. Wu, Y. F. Liao, W. Dong, and L. N. Guo, “Multimodal subcellular imaging with microcavity photoacoustic transducer,” Opt. Express 19(3), 2426–2431 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Nasiriavanaki, J. Xia, H. L. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, “High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain,” Proc. Natl. Acad. Sci. U.S.A. 111(1), 21–26 (2014).
[CrossRef] [PubMed]

Other (1)

B. Soetikno, C. Yeh, S. Hu, Q. Zhong, K. Maslov, and L. V. Wang, “Contour-scanning optical-resolution photoacoustic microscopy,” Photonics West (2013).

Supplementary Material (2)

» Media 1: MOV (582 KB)     
» Media 2: MOV (510 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the VF-PAM system (a) and electrically tunable lens (ETL) placed on top of the plan microscopy objective lens (b). GP, glass plate; SL, scan lens; TL, tube lens; ETL, electrically tunable lens; POL, plan objective lens; UT, ultrasonic transducer; Amp, amplifier; DAQ, data acquisition system; NDF, neutral density filter; Pd, photodiode.

Fig. 2
Fig. 2

Lateral resolution of the VF-PAM system. (a) PA image of a sharp-edged surgical blade acquired with the VF-PAM system. (b) Edge spread function (ESF) extracted from (a) along the dashed line and line spread function (LSF) obtained by taking the derivative of the ESF. (c) PA image of red blood cells (RBCs). (d) Optical microscope (OM) image of RBCs.

Fig. 3
Fig. 3

Focus-shifting range and axial resolution of the VF-PAM system. PA images of (a) the upper plane carbon fiber and (b) the lower plane carbon fiber. The inset at the bottom-right corner of (b) showed schematic diagram of the two planes carbon fibers, the depth interval between the two planes was 2.82 mm. (c) The axial section PA image of carbon fiber in (a). (d)-(e) Distribution of the PA amplitude (dots) along the dashed line in (a)-(b); the solid line is a Gaussian fitted curve. (f) Axial profile of the carbon fiber in (c); Blue line with dot: experimental signal; Red solid line: envelope of the experimental signal.

Fig. 4
Fig. 4

(a)-(h) A series of PA images of the two carbon fibers at different focus shifts acquired with the VF-PAM system, the shifting step was ~10 µm between images. The depth interval between the two planes carbon fibers was ~70 µm. (i) Snapshot of a 3-D animation (Media 1) showed the two planes carbon fibers. (j) Video (Media 2) of the two planes carbon fibers.

Fig. 5
Fig. 5

In vivo PA imaging of microvasculature of a mouse ear and brain tissues of mouse at different depths: (a) PA images of microvasculature of a mouse ear at different focus depths were acquired with the VF-PAM system, the depth interval was ~25 µm between PA images. (b)-(d) Three typical PA images of microvasculature, the focus depths were about 50 µm, 150 µm and 225 µm respectively. (e) Epidermis. (f) Brain subcutaneous vessels (~200 μm). (g) Brain cortex vessels (~400 μm). Brain skull is located at the depth from 200 μm to 400 μm.

Metrics