Abstract

Broadband coherent Rayleigh-Brillouin scattering (CRBS) was used to measure translational gas temperatures for nitrogen, argon, and methane at the ambient pressure of 0.8 atm. Temperatures derived from spectral analysis were compared with experimentally-measured temperatures, with a maximum 5.2% difference for all gases at all temperatures; and with nitrogen, argon, and methane exhibiting average differences over the temperature range tested of 0.8%, 1.4% and −0.5%, respectively. These values are consistent with the 2% estimated, experimental error of the experiment. Improving upon the efficiency of previous line shape acquisition methods, CRBS data were spectrally de-convolved using a cost effective, purpose-designed, Fabry-Perot etalon spectrometer. The resulting line shapes were compared to models obtained from approximations to the 1D Boltzmann equation. Although this study employed broadband CRBS for explicit gas temperature measurement, similar line shape acquisition techniques could be used with broadband coherent Rayleigh scattering (CRS) to experimentally-measure gas temperatures, pressures and other transport properties in both the kinetic (CRBS) and rarefied (CRS) regimes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
    [CrossRef]
  2. P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
    [CrossRef]
  3. M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Micropropulsion devices based on molecular acceleration by pulsed optical lattices,” J. Appl. Phys. 99(6), 063102 (2006).
    [CrossRef]
  4. A. Shevyrin and M. Ivanov, “Separation of gas mixtures due to forces from a nonresonant optical lattice,” J. Appl. Phys. 106(5), 054903 (2009).
    [CrossRef]
  5. M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
    [CrossRef]
  6. G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
    [CrossRef]
  7. A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
    [CrossRef] [PubMed]
  8. G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
    [CrossRef]
  9. J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
    [CrossRef] [PubMed]
  10. X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
    [CrossRef] [PubMed]
  11. M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
    [CrossRef]
  12. H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14(8), 3461–3466 (2006).
    [CrossRef] [PubMed]
  13. H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14(8), 3461–3466 (2006).
    [CrossRef] [PubMed]
  14. H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
    [CrossRef] [PubMed]
  15. P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
    [CrossRef]
  16. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
    [CrossRef] [PubMed]
  17. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
    [CrossRef]
  18. M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
    [CrossRef]
  19. B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever,M. Mareschal and A. Santos, eds., “Coherent Rayleigh-Brillouin scattering in high intensity laser fields,” in 28th International Symposium on Rarefied Gas Dynamics, M. Mareschal, and A. Santos, eds. (American Institute of Physics, 2012).
    [CrossRef]
  20. X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in polyatomic gases,” in Quantum Electronics and Laser Science Conference(Optical Society of America, 2003).
  21. A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
    [CrossRef] [PubMed]
  22. B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
    [CrossRef] [PubMed]
  23. B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
    [CrossRef]
  24. M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
    [CrossRef]
  25. R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17(16), 2477–2480 (1978).
    [CrossRef] [PubMed]
  26. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35(21), 4026–4032 (1996).
    [CrossRef] [PubMed]
  27. G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
    [CrossRef]
  28. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
    [CrossRef]
  29. X. Pan, P. F. Barker, A. V. Meschanov, R. B. Miles, and J. H. Grinstead, “Temperature measurements in plasmas using coherent Rayleigh scattering,” in AIAA Aerospace Sciences Meeting and Exhibit(American Institute of Aeronautics and Astronautics, 2001).
  30. A. Gerakis, M. N. Shneider, and P. F. Barker, “Single-shot coherent Rayleigh-Brillouin scattering using a chirped optical lattice,” Opt. Lett. 38(21), 4449–4452 (2013).
    [CrossRef] [PubMed]
  31. X. Pan, M. N. Shneider, Z. Zhang, and R. B. Miles, “Bulk viscosity measurements using coherent Rayleigh-Brillouin scattering,” in AIAA Aerospace Sciences Meeting and Exhibit(American Institute of Aeronautics and Astronautics, 2004).
  32. M. N. Shneider and S. F. Gimelshein, “Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection,” Appl. Phys. Lett. 102(17), 173109 (2013).
    [CrossRef]
  33. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
    [CrossRef]
  34. P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
    [CrossRef]
  35. R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
    [CrossRef]
  36. B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
    [CrossRef]
  37. R. W. Boyd, Nonlinear Optics (Academic 2008).
  38. M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
    [CrossRef]
  39. Introduction to Thermocouples,” http://www.omega.com/prodinfo/thermocouples.html , Accessed 06/03/2014.
  40. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  41. M. Conde, “Deriving wavelength spectra from fringe images from a fixed-gap single-etalon Fabry-Perot spectrometer,” Appl. Opt. 41(14), 2672–2678 (2002).
    [CrossRef] [PubMed]
  42. P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26(7), 267623 (1986).
    [CrossRef]
  43. B. K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 541–551 (1990).
    [CrossRef]
  44. G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations (Prentice Hall, 1977).
  45. X. Pan, Coherent Rayleigh-Brillouin Scattering (Princeton University, 2003).
  46. G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids 2(12), 2252–2254 (1990).
    [CrossRef]
  47. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
    [CrossRef] [PubMed]
  48. D. R. Lide and W. M. Haynes, eds., CRC Handbook of Chemistry and Physics (CRC, 2009).
  49. X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
    [CrossRef]

2013

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

M. N. Shneider and S. F. Gimelshein, “Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection,” Appl. Phys. Lett. 102(17), 173109 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

A. Gerakis, M. N. Shneider, and P. F. Barker, “Single-shot coherent Rayleigh-Brillouin scattering using a chirped optical lattice,” Opt. Lett. 38(21), 4449–4452 (2013).
[CrossRef] [PubMed]

2012

2011

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

2010

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

2009

A. Shevyrin and M. Ivanov, “Separation of gas mixtures due to forces from a nonresonant optical lattice,” J. Appl. Phys. 106(5), 054903 (2009).
[CrossRef]

2008

P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
[CrossRef]

2007

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
[CrossRef]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

2006

2005

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
[CrossRef]

X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
[CrossRef]

2004

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

2003

G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
[CrossRef]

2002

2001

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[CrossRef]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

2000

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

1999

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
[CrossRef]

1996

1995

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

1990

B. K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 541–551 (1990).
[CrossRef]

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids 2(12), 2252–2254 (1990).
[CrossRef]

1986

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26(7), 267623 (1986).
[CrossRef]

1978

1974

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Baer, D. S.

Barker, P. F.

A. Gerakis, M. N. Shneider, and P. F. Barker, “Single-shot coherent Rayleigh-Brillouin scattering using a chirped optical lattice,” Opt. Lett. 38(21), 4449–4452 (2013).
[CrossRef] [PubMed]

P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
[CrossRef]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
[CrossRef]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14(8), 3461–3466 (2006).
[CrossRef] [PubMed]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Micropropulsion devices based on molecular acceleration by pulsed optical lattices,” J. Appl. Phys. 99(6), 063102 (2006).
[CrossRef]

H. T. Bookey, A. I. Bishop, and P. F. Barker, “Narrow-band coherent Rayleigh scattering in a flame,” Opt. Express 14(8), 3461–3466 (2006).
[CrossRef] [PubMed]

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
[CrossRef]

Begley, R. F.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Bishop, A. I.

Bookey, H. T.

Byer, R. L.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Chin, R. T.

B. K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 541–551 (1990).
[CrossRef]

Chou, S. I.

Conde, M.

Cornella, B. M.

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
[CrossRef] [PubMed]

Dam, N. J.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

de Wijn, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Dong, G.

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
[CrossRef]

Emanuel, G.

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids 2(12), 2252–2254 (1990).
[CrossRef]

Falcone, P. K.

Forkey, J. N.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[CrossRef]

Gerakis, A.

Gimelshein, S. F.

M. N. Shneider and S. F. Gimelshein, “Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection,” Appl. Phys. Lett. 102(17), 173109 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
[CrossRef] [PubMed]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
[CrossRef]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Micropropulsion devices based on molecular acceleration by pulsed optical lattices,” J. Appl. Phys. 99(6), 063102 (2006).
[CrossRef]

Grinstead, J. H.

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
[CrossRef]

Hanson, R. K.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
[CrossRef]

V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35(21), 4026–4032 (1996).
[CrossRef] [PubMed]

R. K. Hanson and P. K. Falcone, “Temperature measurement technique for high-temperature gases using a tunable diode laser,” Appl. Opt. 17(16), 2477–2480 (1978).
[CrossRef] [PubMed]

Harvey, A. B.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

Ivanov, M.

A. Shevyrin and M. Ivanov, “Separation of gas mixtures due to forces from a nonresonant optical lattice,” J. Appl. Phys. 106(5), 054903 (2009).
[CrossRef]

Jang, B. K.

B. K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 541–551 (1990).
[CrossRef]

Jeffries, J. B.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
[CrossRef]

Jessen, P. S.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

Kastberg, A.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

Ketsdever, A. D.

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
[CrossRef] [PubMed]

Lempert, W. R.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[CrossRef]

Li, H.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

Lilly, T. C.

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
[CrossRef] [PubMed]

Liu, X.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

Lu, W.

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
[CrossRef]

Manteghi, A.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

Maragos, P.

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26(7), 267623 (1986).
[CrossRef]

Meijer, A.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Meijer, A. S.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Meschanov, A.

Miles, R.

X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

Miles, R. B.

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[CrossRef]

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
[CrossRef]

Nagali, V.

Pan, X.

X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

Peters, M. F. E.

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

Phillips, W. D.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

Purcell, S. M.

P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
[CrossRef]

Rieker, G. B.

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

Rolston, S. L.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

Segall, J.

Shevyrin, A.

A. Shevyrin and M. Ivanov, “Separation of gas mixtures due to forces from a nonresonant optical lattice,” J. Appl. Phys. 106(5), 054903 (2009).
[CrossRef]

Shneider, M.

X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

Shneider, M. N.

A. Gerakis, M. N. Shneider, and P. F. Barker, “Single-shot coherent Rayleigh-Brillouin scattering using a chirped optical lattice,” Opt. Lett. 38(21), 4449–4452 (2013).
[CrossRef] [PubMed]

M. N. Shneider and S. F. Gimelshein, “Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection,” Appl. Phys. Lett. 102(17), 173109 (2013).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, M. N. Shneider, T. C. Lilly, and A. D. Ketsdever, “Experimental and numerical analysis of narrowband coherent Rayleigh-Brillouin scattering in atomic and molecular species,” Opt. Express 20(12), 12975–12986 (2012).
[CrossRef] [PubMed]

P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
[CrossRef]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
[CrossRef]

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Micropropulsion devices based on molecular acceleration by pulsed optical lattices,” J. Appl. Phys. 99(6), 063102 (2006).
[CrossRef]

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

X. Pan, P. F. Barker, A. Meschanov, J. H. Grinstead, M. N. Shneider, and R. B. Miles, “Temperature measurements by coherent Rayleigh scattering,” Opt. Lett. 27(3), 161–163 (2002).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

Sneep, M.

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
[CrossRef]

Spreeuw, R. J. C.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

Ubachs, W.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
[CrossRef]

van de Water, W.

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

van Duijn, E. J.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Vieitez, M. O.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Witschas, B.

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

Zhou, X.

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. B. Rieker, X. Liu, H. Li, J. B. Jeffries, and R. K. Hanson, “Measurements of near-IR water vapor absorption at high pressure and temperature,” Appl. Phys. B 87(1), 169–178 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81(5), 711–722 (2005).
[CrossRef]

Appl. Phys. Lett.

M. N. Shneider and S. F. Gimelshein, “Application of coherent Rayleigh-Brillouin scattering for in situ nanoparticle and large molecule detection,” Appl. Phys. Lett. 102(17), 173109 (2013).
[CrossRef]

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti‐Stokes Raman spectroscopy,” Appl. Phys. Lett. 25(7), 387–390 (1974).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Neutral gas heating via non-resonant optical lattices,” Appl. Phys. Lett. 103(19), 194103 (2013).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

M. N. Shneider, P. F. Barker, and S. F. Gimelshein, “Molecular transport in pulsed optical lattices,” Appl. Phys., A Mater. Sci. Process. 89(2), 337–350 (2007).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

B. K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical morphology,” IEEE Trans. Pattern Anal. Mach. Intell. 12(6), 541–551 (1990).
[CrossRef]

J. Appl. Phys.

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Micropropulsion devices based on molecular acceleration by pulsed optical lattices,” J. Appl. Phys. 99(6), 063102 (2006).
[CrossRef]

A. Shevyrin and M. Ivanov, “Separation of gas mixtures due to forces from a nonresonant optical lattice,” J. Appl. Phys. 106(5), 054903 (2009).
[CrossRef]

J. Chem. Phys.

G. Dong, W. Lu, and P. F. Barker, “Untrapped dynamics of molecules within an accelerating optical lattice,” J. Chem. Phys. 118(4), 1729–1734 (2003).
[CrossRef]

A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, “Coherent Rayleigh-Brillouin scattering measurements of bulk viscosity of polar and nonpolar gases, and kinetic theory,” J. Chem. Phys. 133(16), 164315 (2010).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transf.

M. Sneep and W. Ubachs, “Direct measurement of the Rayleigh scattering cross section in various gases,” J. Quant. Spectrosc. Radiat. Transf. 92(3), 293–310 (2005).
[CrossRef]

Laser Phys. Lett.

M. N. Shneider, S. F. Gimelshein, and P. F. Barker, “Separation of binary gas mixtures in a capillary with an optical lattice,” Laser Phys. Lett. 4(7), 519–523 (2007).
[CrossRef]

Meas. Sci. Technol.

R. B. Miles, W. R. Lempert, and J. N. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Technol. 12(5), R33–R51 (2001).
[CrossRef]

Opt. Commun.

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1–4), 177–182 (1999).
[CrossRef]

M. N. Shneider, P. F. Barker, X. Pan, and R. B. Miles, “Coherent Rayleigh scattering in the high intensity regime,” Opt. Commun. 239(1–3), 205–211 (2004).
[CrossRef]

Opt. Eng.

P. Maragos, “Tutorial on advances in morphological image processing and analysis,” Opt. Eng. 26(7), 267623 (1986).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Fluids

G. Emanuel, “Bulk viscosity of a dilute polyatomic gas,” Phys. Fluids 2(12), 2252–2254 (1990).
[CrossRef]

Phys. Rev. A

X. Pan, M. Shneider, and R. Miles, “Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide,” Phys. Rev. A 71(4), 045801 (2005).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever, “Narrowband coherent Rayleigh-Brillouin scattering from gases confined by a high-intensity optical lattice,” Phys. Rev. A 87(3), 033825 (2013).
[CrossRef]

P. F. Barker, S. M. Purcell, and M. N. Shneider, “Spectra of molecular gases trapped in deep optical lattices,” Phys. Rev. A 77(6), 063409 (2008).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in molecular gases,” Phys. Rev. A 69(3), 033814 (2004).
[CrossRef]

M. O. Vieitez, E. J. van Duijn, W. Ubachs, B. Witschas, A. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, “Coherent and spontaneous Rayleigh-Brillouin scattering in atomic and molecular gases and gas mixtures,” Phys. Rev. A 82(4), 043836 (2010).
[CrossRef]

P. F. Barker and M. N. Shneider, “Optical microlinear accelerator for molecules and atoms,” Phys. Rev. A 64(3), 033408 (2001).
[CrossRef]

Phys. Rev. Lett.

A. Kastberg, W. D. Phillips, S. L. Rolston, R. J. C. Spreeuw, and P. S. Jessen, “Adiabatic cooling of Cesium to 700 nK in an optical lattice,” Phys. Rev. Lett. 74(9), 1542–1545 (1995).
[CrossRef] [PubMed]

J. H. Grinstead and P. F. Barker, “Coherent Rayleigh scattering,” Phys. Rev. Lett. 85(6), 1222–1225 (2000).
[CrossRef] [PubMed]

H. T. Bookey, M. N. Shneider, and P. F. Barker, “Spectral narrowing in coherent Rayleigh scattering,” Phys. Rev. Lett. 99(13), 133001 (2007).
[CrossRef] [PubMed]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 89(18), 183001 (2002).
[CrossRef] [PubMed]

A. Manteghi, N. J. Dam, A. S. Meijer, A. S. de Wijn, and W. van de Water, “Spectral narrowing in coherent Rayleigh-Brillouin scattering,” Phys. Rev. Lett. 107(17), 173903 (2011).
[CrossRef] [PubMed]

Prog. Quantum Electron.

G. Dong, W. Lu, P. F. Barker, and M. N. Shneider, “Cold molecules in pulsed optical lattices,” Prog. Quantum Electron. 29(1), 1–58 (2005).
[CrossRef]

Other

B. M. Cornella, S. F. Gimelshein, T. C. Lilly, and A. D. Ketsdever,M. Mareschal and A. Santos, eds., “Coherent Rayleigh-Brillouin scattering in high intensity laser fields,” in 28th International Symposium on Rarefied Gas Dynamics, M. Mareschal, and A. Santos, eds. (American Institute of Physics, 2012).
[CrossRef]

X. Pan, M. N. Shneider, and R. B. Miles, “Coherent Rayleigh-Brillouin scattering in polyatomic gases,” in Quantum Electronics and Laser Science Conference(Optical Society of America, 2003).

X. Pan, P. F. Barker, A. V. Meschanov, R. B. Miles, and J. H. Grinstead, “Temperature measurements in plasmas using coherent Rayleigh scattering,” in AIAA Aerospace Sciences Meeting and Exhibit(American Institute of Aeronautics and Astronautics, 2001).

X. Pan, M. N. Shneider, Z. Zhang, and R. B. Miles, “Bulk viscosity measurements using coherent Rayleigh-Brillouin scattering,” in AIAA Aerospace Sciences Meeting and Exhibit(American Institute of Aeronautics and Astronautics, 2004).

Introduction to Thermocouples,” http://www.omega.com/prodinfo/thermocouples.html , Accessed 06/03/2014.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

R. W. Boyd, Nonlinear Optics (Academic 2008).

G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations (Prentice Hall, 1977).

X. Pan, Coherent Rayleigh-Brillouin Scattering (Princeton University, 2003).

D. R. Lide and W. M. Haynes, eds., CRC Handbook of Chemistry and Physics (CRC, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CRBS conceptual diagram.

Fig. 2
Fig. 2

CRBS line shape “rainbow” of N2 at 1 atm illustrating a clear temperature dependence in the line shape.

Fig. 3
Fig. 3

CRBS line shape “rainbow” of N2 at 1 atm illustrating a clear temperature dependence in the line shape.

Fig. 4
Fig. 4

Raw CRBS probe (left) and signal (right) for N2 at 300 K as imaged through a 12 GHz FSR Fabry-Perot. Color denotes non-dimensional intensity value.

Fig. 5
Fig. 5

Phase map (left) of CRBS probe derived from Fig. 4 (left) with filtered CRBS signal (center) and averaged intensity histogram over an order of interference range (right) corresponding to the shaded region of the center image.

Fig. 6
Fig. 6

(Left) N2 300 K CRBS experimental signal spectra; raw and filtered. (Right) Same experimental spectra, with the fit CRBS line shape corresponding to a temperature of 296.8 K.

Fig. 7
Fig. 7

Nitrogen (Left), argon (Right) and methane (Bottom) CRBS spectral temperatures plotted as a function of measured thermocouple temperature, with corresponding percentage error (below).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F=U=( α 2 ) | E | 2
I signal   I probe δρ 2
k sig k probe = k 1 k 2
A( m )= T 2 ( 1R ) 2 1+[ 4R ( 1R ) 2 ] sin 2 ( πm ) where m= 2μtcosθ λ 0 + ϕ( λ ) π
m( x,y, λ 0 ) m 0 L θ 2 ( x,y )μt λ 0  
θ= L θ ( x,y )=α ( x x 0 ) 2 + ( y y 0 ) 2
m( x,y, λ 0 ) m 0 β[ ( x x 0 ) 2 + ( y y 0 ) 2 ] where β= α 2 μt/ λ 0
u=( x x 0 )+ γ x | x x 0 | v=( y y 0 )+ γ y | y y 0 |
m( x,y )= m 0 ψ( x,y )+ εψ 2 ( x,y )
where ψ( x,y, λ 0 )= β x u 2 + β y v 2 + β xy uv
κ= x=1 N x y=1 N Y { A m ¯ [ m( x,y, λ 0 ) ] P r ¯ ( x,y ) }
A m ¯ [ m( x,y, λ 0 ) ]= A m [ m( x,y, λ 0 ) ]min( min( A m [ m( x,y, λ 0 ) ] ) ) and P r ¯ ( x,y )= P r ( x,y )min( min( P r ( x,y ) ) )
S( λ n )= B[ m( x,y, λ n ) ] x=1 N x y=1 N y A m [ m( x,y, λ n ) ]
λ n = λ 0 ±zFSR and 0z 1 2
  δρ 2   I 1 I 2

Metrics