Abstract

Recently, a conformal surface plasmon (CSP) structure has been successfully proposed, which is very promising for application of planar plasmonic devices in the frequency ranging from microwave to mid-infrared [Proc. Natl. Acad. Sci. U.S.A. 110, 40-45 (2013)]. Here we investigated the dispersions and electromagnetic (EM) field patterns of a symmetric CSP structure in which the two sides of the planar metal strip are symmetrically corrugated by groove arrays. The symmetric CSP structure can support both the symmetric mode (even mode) and the anti-symmetric mode (odd mode) of surface wave propagation. Based on the even mode, we analyzed the EM wave coupling between two adjacent symmetry CSP strips, and then designed and analyzed two planar CSP waveguide devices in the terahertz frequency: a frequency splitter and a 3 dB directional coupler. To verify the functionality and performance of these waveguide devices, we scaled down the working frequency to microwave and designed similar devices with scaled geometry. We implemented microwave experiments on the fabricated prototypes, and the tested device performances have clearly validated the functionality of our designs. The symmetric CSP structure is believed to be very applicable in future design of novel planar plasmonic device and circuitry.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett. 30(17), 2209–2211 (2005).
    [CrossRef] [PubMed]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  5. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  6. F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
    [CrossRef]
  7. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
    [CrossRef] [PubMed]
  8. F. García de Abajo and J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
    [CrossRef] [PubMed]
  9. E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
    [CrossRef]
  10. L. F. Shen, X. D. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
    [CrossRef] [PubMed]
  11. C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
    [CrossRef]
  12. A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
    [CrossRef]
  13. D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
    [CrossRef] [PubMed]
  14. W. S. Zhao, O. M. Eldaiki, R. X. Yang, and Z. L. Lu, “Deep subwavelength waveguiding and focusing based on designer surface plasmons,” Opt. Express 18(20), 21498–21503 (2010).
    [CrossRef] [PubMed]
  15. N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010).
    [CrossRef]
  16. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
    [CrossRef]
  17. Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
    [CrossRef] [PubMed]
  18. Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
    [CrossRef]
  19. E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
    [CrossRef]
  20. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [CrossRef] [PubMed]
  21. X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
    [CrossRef]
  22. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [CrossRef]
  23. X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
    [CrossRef] [PubMed]
  24. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [CrossRef]
  25. A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
    [CrossRef]
  26. B. Alexandra and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1233–1241 (2006).
    [CrossRef]
  27. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

2013

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[CrossRef]

X. Liu, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “High-order modes of spoof surface plasmonic wave transmission on thin metal film structure,” Opt. Express 21(25), 31155–31165 (2013).
[CrossRef] [PubMed]

2011

Y. G. Ma, L. Lan, S. M. Zhong, and C. K. Ong, “Experimental demonstration of subwavelength domino plasmon devices for compact high-frequency circuit,” Opt. Express 19(22), 21189–21198 (2011).
[CrossRef] [PubMed]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
[CrossRef]

E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
[CrossRef]

2010

2009

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

2008

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

L. F. Shen, X. D. Chen, and T. J. Yang, “Terahertz surface plasmon polaritons on periodically corrugated metal surfaces,” Opt. Express 16(5), 3326–3333 (2008).
[CrossRef] [PubMed]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

B. Alexandra and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1233–1241 (2006).
[CrossRef]

2005

W. H. Tsai, Y. C. Tsao, H. Y. Lin, and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett. 30(17), 2209–2211 (2005).
[CrossRef] [PubMed]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

F. García de Abajo and J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

2004

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1991

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Alexandra, B.

B. Alexandra and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1233–1241 (2006).
[CrossRef]

Andrews, S. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

B. Alexandra and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1233–1241 (2006).
[CrossRef]

Brock, E. M. G.

E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
[CrossRef]

Chen, X. D.

Cui, T. J.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Eldaiki, O. M.

Evans, B. R.

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Feng, Y.

Fernandez-Dominguez, A. I.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Fernández-Domínguez, A.

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Gao, X.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

García de Abajo, F.

F. García de Abajo and J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Garcia-Vidal, J. F.

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Hendry, E.

E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
[CrossRef]

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
[CrossRef]

Hibbins, A. P.

E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
[CrossRef]

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Jiang, Q.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[CrossRef]

Jiang, T.

Jiang, W. X.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Lan, L.

Li, L. M.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Li, Y.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[CrossRef]

Lin, H. Y.

Liu, X.

Lu, Z. L.

Ma, A.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[CrossRef]

Ma, H. F.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Ma, Y. G.

Maier, S. A.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

Martin-Moreno, L.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Moreno, E.

D. Martin-Cano, M. L. Nesterov, A. I. Fernandez-Dominguez, F. J. Garcia-Vidal, L. Martin-Moreno, and E. Moreno, “Domino plasmons for subwavelength terahertz circuitry,” Opt. Express 18(2), 754–764 (2010).
[CrossRef] [PubMed]

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

Nesterov, M. L.

Ong, C. K.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pendry, J. B.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Sáenz, J.

F. García de Abajo and J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

Sambles, J. R.

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
[CrossRef]

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

Shahabadi, M.

N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010).
[CrossRef]

Shen, L. F.

Shen, X.

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

Shen, X. P.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Sheu, B. C.

Shi, J. H.

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

Talebi, N.

N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010).
[CrossRef]

Tsai, W. H.

Tsao, Y. C.

Williams, C. R.

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Yang, R. X.

Yang, T. J.

Zhang, X.

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[CrossRef]

Zhao, J.

Zhao, W. S.

Zhong, S. M.

Zhou, Y. J.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[CrossRef]

Zhu, B.

Appl. Phys. Lett.

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Bidirectional bending splitter of designer surface plasmons,” Appl. Phys. Lett. 99(11), 111904 (2011).
[CrossRef]

Y. J. Zhou, Q. Jiang, and T. J. Cui, “Multidirectional surface-wave splitters,” Appl. Phys. Lett. 98(22), 221901 (2011).
[CrossRef]

E. M. G. Brock, E. Hendry, and A. P. Hibbins, “Subwavelength lateral confinement of microwave surface waves,” Appl. Phys. Lett. 99(5), 051108 (2011).
[CrossRef]

X. Gao, J. H. Shi, X. P. Shen, H. F. Ma, W. X. Jiang, L. M. Li, and T. J. Cui, “Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies,” Appl. Phys. Lett. 102(15), 151912 (2013).
[CrossRef]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. Alexandra and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1233–1241 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

F. J. Garcia-Vidal, L. Martin-Moreno, and J. B. Pendry, “Surfaces with holes in them: new plasmonic metamaterials,” J. Opt. A, Pure Appl. Opt. 7(2), S97–S101 (2005).
[CrossRef]

J. Phys. D Appl. Phys.

N. Talebi and M. Shahabadi, “Spoof surface plasmons propagating along a periodically corrugated coaxial waveguide,” J. Phys. D Appl. Phys. 43(13), 135302 (2010).
[CrossRef]

Nat. Photonics

C. R. Williams, S. R. Andrews, S. A. Maier, A. I. Fernandez-Dominguez, L. Martin-Moreno, and F. J. Garcia-Vidal, “Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces,” Nat. Photonics 2(3), 175–179 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Fernández-Domínguez, E. Moreno, L. Martin-Moreno, and J. F. Garcia-Vidal, “Guiding terahertz waves along subwavelength channels,” Phys. Rev. B 79(23), 233104 (2009).
[CrossRef]

E. Hendry, A. P. Hibbins, and J. R. Sambles, “Importance of diffraction in determining the dispersion of designer surface plasmons,” Phys. Rev. B 78(23), 235426 (2008).
[CrossRef]

Phys. Rev. Lett.

F. García de Abajo and J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett. 95(23), 233901 (2005).
[CrossRef] [PubMed]

Plasmonics

A. Ma, Y. Li, and X. Zhang, “Coupled mode theory for surface plasmon polariton waveguides,” Plasmonics 8(2), 769–777 (2013).
[CrossRef]

Proc. IEEE

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[CrossRef] [PubMed]

Science

A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Dispersion relations of the symmetric CSP structure with different groove depth. The blue line indicates the light line. For comparison the dispersion curve of a single-sided CSP structure with same size is also displayed (black hollow circles). The inset shows the schematic of the symmetric CSP structure on a polyimide substrate.

Fig. 2
Fig. 2

(a) Schematic of the symmetric CSP waveguide in the terahertz frequency. (b) and (c) demonstrate the simulated electric fields (EZ) along the CSP waveguide at 0.7 THz (even mode) and 1 THz (odd mode), respectively.

Fig. 3
Fig. 3

Propagation lengths normalized to the operating wavelength for different CPS structures composed of gold or PEC film. Other structure parameters are the same as that in Fig. 1.

Fig. 4
Fig. 4

(a) The coupling coefficient, and (b) the transmission spectrum of two adjacent parallel CSP waveguides as a function of the working frequency. The parameters h, d, a, w are fixed as 37 μm, 50 μm, 40 μm, and 79 μm. The surrounding dielectric medium is assumed to be free space and the metal is considered as a perfectly electrical conductor (PEC) for simplicity.

Fig. 5
Fig. 5

(a) The schematic of the proposed CSP frequency splitter. (b) - (d) The calculated transmission spectrum (b) of the frequency splitter, and the simulated electric field EZ distributions at the surface of the CSP frequency splitter at 0.25 THz (c) and 0.55 THz (d), respectively.

Fig. 6
Fig. 6

(a) The calculated transmission spectrum of the CSP 3 dB coupler, and (b) the simulated electric field distribution (EZ) along the surface of the CSP coupler at 0.45 THz.

Fig. 7
Fig. 7

(a) The photograph of the fabricated prototype device of the proposed CSP frequency splitter with input and output CPW sections connected to SMA connectors. (b) The calculated and measured transmission spectra of the CSP frequency splitter at microwave frequency.

Fig. 8
Fig. 8

(a) The photograph of the fabricated prototype device of a CSP 3 dB directional coupler with input and output CPW sections connected to SMA connectors. (b) The calculated and measured transmission spectra of the 3 dB coupler at microwave frequency.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ P 1 = P 0 cos 2 (κx) e 2αx P 2 = P 0 sin 2 (κx) e 2αx ,
κ= ω ε 0 4 ( n 2 n 0 2 ) [ E 1t E 2t +( n 0 2 n 2 ) E 1x E 2x ]dydz.
L π/2 = π 2κ .

Metrics