Abstract

Tapered optical fibers are promising one-dimensional nanophotonic waveguides that can provide efficient coupling between their fundamental mode and quantum nanoemitters placed inside them. Here, we present numerical studies on the coupling of single nitrogen-vacancy (NV) centers (single point dipoles) in nanodiamonds with tapered fibers. Our results lead to two important conclusions: (1) A maximum coupling efficiency of 53.4% can be realized for the two fiber ends when the NV bare dipole is located at the center of the tapered fiber. (2) NV centers even in 100-nm-sized nanodiamonds where bulk-like optical properties were reported show a coupling efficiency of 22% at the taper surface, with the coupling efficiency monotonically decreasing as the nanodiamond size increases. These results will be helpful in guiding the development of hybrid quantum devices for applications in quantum information science.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Observation of 1.2-GHz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a Fabry-Perot interferometer

Hong-Quan Zhao, Masazumi Fujiwara, Masayuki Okano, and Shigeki Takeuchi
Opt. Express 21(24) 29679-29686 (2013)

Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube

Sebastain K.H. Andersen, Shailesh Kumar, and Sergey I. Bozhevolnyi
Opt. Mater. Express 6(11) 3394-3406 (2016)

Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures

Masazumi Fujiwara, Hong-Quan Zhao, Tetsuya Noda, Kazuhiro Ikeda, Hitoshi Sumiya, and Shigeki Takeuchi
Opt. Lett. 40(24) 5702-5705 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
    [Crossref]
  2. F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review,” Phys. Stat. Solidi (A) 203, 3207–3225 (2006).
    [Crossref]
  3. P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
    [Crossref] [PubMed]
  4. Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
    [Crossref]
  5. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
    [Crossref] [PubMed]
  6. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
    [Crossref]
  7. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
    [Crossref] [PubMed]
  8. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
    [Crossref] [PubMed]
  9. E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
    [Crossref] [PubMed]
  10. J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
    [Crossref] [PubMed]
  11. G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
    [Crossref] [PubMed]
  12. C. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008).
    [Crossref]
  13. T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
    [Crossref]
  14. O. Benson, “Assembly of hybrid photonic architectures from nanophotonredic constituents,” Nature 480, 193–199 (2011).
    [Crossref] [PubMed]
  15. J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
    [Crossref]
  16. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled optical cavity-qed system,” Opt. Express 17, 8081–8097 (2009).
    [Crossref] [PubMed]
  17. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [Crossref] [PubMed]
  18. L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
    [Crossref]
  19. X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
    [Crossref]
  20. K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
    [Crossref] [PubMed]
  21. M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
    [Crossref] [PubMed]
  22. K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
    [Crossref]
  23. A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
    [Crossref] [PubMed]
  24. M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
    [Crossref] [PubMed]
  25. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref] [PubMed]
  26. M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
    [Crossref]
  27. M. R. Henderson, S. Afshar V, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
    [Crossref] [PubMed]
  28. C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
    [Crossref]
  29. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
    [Crossref]
  30. G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
    [Crossref] [PubMed]
  31. J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
    [Crossref]
  32. T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
    [Crossref]
  33. A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
    [Crossref] [PubMed]
  34. F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
    [Crossref]
  35. M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
    [Crossref] [PubMed]
  36. M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. Lett. 34, 2542–2544 (2009).
    [Crossref] [PubMed]
  37. M. Davanço and K. Srinivasan, “Hybrid gap modes induced by fiber taper waveguides: Application in spectroscopy of single solid-state emitters deposited on thin films,” Opt. Express 18, 10995–11007 (2010).
    [Crossref] [PubMed]
  38. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
    [Crossref]
  39. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [Crossref] [PubMed]
  40. F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
    [Crossref]
  41. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref] [PubMed]
  42. E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).
  43. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
    [Crossref] [PubMed]
  44. T. Aoki, “Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators,” Jpn. J. Appl. Phys. 49, 8001 (2010).
    [Crossref]
  45. R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
    [Crossref]
  46. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
    [Crossref] [PubMed]
  47. J. J. David, Classical electrodynamics (Wiley Eastern Limited, 1975).
  48. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
    [Crossref]
  49. I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
    [Crossref] [PubMed]
  50. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  51. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of pbs quantum dots,” Opt. Express 19, 1786–1793 (2011).
    [Crossref] [PubMed]
  52. M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
    [Crossref]
  53. I. Friedler, C. Sauvan, J.-P. Hugonin, P. Lalanne, J. Claudon, and J. Gèrard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
    [Crossref] [PubMed]
  54. H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).
  55. H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410 (1988).
    [Crossref] [PubMed]
  56. F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
    [Crossref]
  57. F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
    [Crossref] [PubMed]
  58. A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
    [Crossref]
  59. H.-Q. Zhao, M. Fujiwara, M. Okano, and S. Takeuchi, “Observation of 1.2-ghz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a fabry-perot interferometer,” Opt. Express 21, 29679–29686 (2013).
    [Crossref]
  60. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
    [Crossref] [PubMed]
  61. M. Fujiwara, T. Noda, A. Tanaka, K. Toubaru, H.-Q. Zhao, and S. Takeuchi, “Coupling of ultrathin tapered fibers with high-q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling,” Opt. Express 20, 19545–19553 (2012).
    [Crossref] [PubMed]
  62. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express 18, 15169–15173 (2010).
    [Crossref] [PubMed]
  63. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
    [Crossref]
  64. A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
    [Crossref]
  65. The exact distance in vacuum that corresponds to those in nanodiamond should be written in d/ndiamond. These values can be easily interpolated from the calculated results in Fig. 7(c).
  66. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
    [Crossref] [PubMed]
  67. H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
    [Crossref] [PubMed]

2014 (1)

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

2013 (6)

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

H.-Q. Zhao, M. Fujiwara, M. Okano, and S. Takeuchi, “Observation of 1.2-ghz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a fabry-perot interferometer,” Opt. Express 21, 29679–29686 (2013).
[Crossref]

2012 (9)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

M. Fujiwara, T. Noda, A. Tanaka, K. Toubaru, H.-Q. Zhao, and S. Takeuchi, “Coupling of ultrathin tapered fibers with high-q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling,” Opt. Express 20, 19545–19553 (2012).
[Crossref] [PubMed]

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

2011 (11)

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

M. R. Henderson, S. Afshar V, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonredic constituents,” Nature 480, 193–199 (2011).
[Crossref] [PubMed]

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of pbs quantum dots,” Opt. Express 19, 1786–1793 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

2010 (8)

T. Aoki, “Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators,” Jpn. J. Appl. Phys. 49, 8001 (2010).
[Crossref]

M. Davanço and K. Srinivasan, “Hybrid gap modes induced by fiber taper waveguides: Application in spectroscopy of single solid-state emitters deposited on thin films,” Opt. Express 18, 10995–11007 (2010).
[Crossref] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express 18, 15169–15173 (2010).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[Crossref] [PubMed]

2009 (10)

K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[Crossref]

M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[Crossref] [PubMed]

M. Davanço and K. Srinivasan, “Fiber-coupled semiconductor waveguides as an efficient optical interface to a single quantum dipole,” Opt. Lett. 34, 2542–2544 (2009).
[Crossref] [PubMed]

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled optical cavity-qed system,” Opt. Express 17, 8081–8097 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

I. Friedler, C. Sauvan, J.-P. Hugonin, P. Lalanne, J. Claudon, and J. Gèrard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[Crossref] [PubMed]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

2008 (6)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

C. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008).
[Crossref]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
[Crossref]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

2007 (2)

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

2006 (2)

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review,” Phys. Stat. Solidi (A) 203, 3207–3225 (2006).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

2005 (1)

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

2004 (3)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

2002 (2)

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

2000 (2)

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[Crossref]

1988 (1)

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410 (1988).
[Crossref] [PubMed]

1987 (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).

Achard, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Afshar V, S.

Aharonovich, I.

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

Aichele, T.

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

Akopian, N.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Alegre, T. P. M.

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

Al-Hmoud, M.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Alt, W.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Alton, D.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

Aoki, T.

T. Aoki, “Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators,” Jpn. J. Appl. Phys. 49, 8001 (2010).
[Crossref]

Arcizet, O.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

Arend, C.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Asai, T.

Aulenbacher, K.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Badolato, A.

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

Bakkers, E. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Balasubramanian, G.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Balykin, V.

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Barclay, P. E.

Barnard, A.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Barth, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Batalov, A.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Bavinck, M. B.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled optical cavity-qed system,” Opt. Express 17, 8081–8097 (2009).
[Crossref] [PubMed]

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

Becher, C.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Beck, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Benson, O.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonredic constituents,” Nature 480, 193–199 (2011).
[Crossref] [PubMed]

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Bernien, H.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Birks, T. A.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Börsch, M.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Bose, R.

Boudou, J.-P.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Bradac, C.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Bratschitsch, R.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Brown, L.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Bruse, F.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Budker, D.

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Bulgarini, G.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Burchardt, D.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Canning, J.

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Cappellaro, P.

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Castelletto, S.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

Chan, I.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Chew, H.

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410 (1988).
[Crossref] [PubMed]

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).

Childress, L.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Choi, K.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Chu, Y.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Claudon, J.

Crossley, M. J.

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Cui, J.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Curmi, P. A.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Dan, C.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Das, M.

Davanço, M.

David, J. J.

J. J. David, Classical electrodynamics (Wiley Eastern Limited, 1975).

Dawes, J.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Dawkins, S.

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Degen, C.

C. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008).
[Crossref]

Delaney, P.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Ding, D.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Doherty, M. W.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Doscher, H.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Dutt, M.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Dutt, M. G.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Erdmann, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Feng, F.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Friedler, I.

Fu, K.-M.

Fujiwara, M.

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Gaebel, T.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Garcia-Fernandez, R.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Gèrard, J.

Ghodbane, S.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Gibson, B. C.

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Goban, A.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Gogotsi, Y.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Greentree, A.

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Greentree, A. D.

M. R. Henderson, S. Afshar V, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

Grogan, M. D.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Gross, E.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Grotz, B.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Guldner, F.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[Crossref] [PubMed]

K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[Crossref]

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[Crossref]

Hannappel, T.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Hanson, R.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

Hemmer, P.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Hemmer, P. R.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Henderson, M. R.

Hepp, C.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Ho, D.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

Hocevar, M.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Hodges, J.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Hollenberg, L.

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Hollenberg, L. C.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Hong, S.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

Hugonin, J.-P.

Inam, F.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Inam, F. A.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Isoya, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Jacques, V.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Jelezko, F.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review,” Phys. Stat. Solidi (A) 203, 3207–3225 (2006).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Jiang, L.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Kaiser, F.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Karapetyan, K.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Kewes, G.

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Khan, M.

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Kien, F. L.

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[Crossref]

Kim, C.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Kimble, H.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Kippenberg, T.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

Kippenberg, T. J.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

Koenderink, A. F.

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

Kolesov, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Kouwenhoven, L. P.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Krueger, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Kubo, M.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Kucsko, G.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Lacroûte, C.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Lalanne, P.

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[Crossref] [PubMed]

K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

Leitenstorfer, A.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Liang, J.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Liang, Y.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Liu, X.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Lo, P.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Lochel, B.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Lou, J.

Lou, L.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Lukin, M.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Lukin, M. D.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Manson, N.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Manson, N. B.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Markham, M.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Maurer, P.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Maze, J.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Mazur, E.

McCallum, J. C.

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

McMurtrie, R.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Medeiros-Ribeiro, G.

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

Meinhardt, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Melentiev, P.

Meschede, D.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Mitsch, R.

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

Mizuochi, N.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Mochalin, V. N.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

Mohtashami, A.

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

Monro, T. M.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[Crossref] [PubMed]

K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[Crossref]

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

Münchow, A. v.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Naidoo, N.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Naqshbandi, M.

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Nash, M. M.

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Nayak, K.

Naydenov, B.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Neu, E.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Neumann, P.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Noda, T.

Noh, H.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Nusse, N.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Okano, M.

Painter, O.

Park, H.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Petersen, F.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Plakhotnik, T.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Pototschnig, M.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Prawer, S.

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Quang, N. H.

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[Crossref]

Rabeau, J.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Rabeau, J. R.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Rakher, M.

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

Rakher, M. T.

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Rehband, O.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Reimer, M. E.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Reitz, D.

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Reuter, R.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Riviere, R.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

Rivière, R.

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

Robledo, L.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

Rogers, L.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Rollings, M.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Sandoghdar, V.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled optical cavity-qed system,” Opt. Express 17, 8081–8097 (2009).
[Crossref] [PubMed]

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

Sasaki, K.

Sauvan, C.

Say, J. M.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Schell, A. W.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schliesser, A.

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Schneeweiss, P.

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

Schniepp, H.

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

Schoengen, M.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Schröder, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

Schuh, D.

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

Sellars, M.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Sennour, M.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
[Crossref]

Shenderova, O.

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

Shin, C.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Shirasaki, A.

Simpson, D. A.

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

Siyushev, P.

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Song, X.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Sørensen, A.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Srinivasan, K.

Stanwix, P.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Steel, M.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Steel, M. J.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Steinmetz, D.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Steinmüller-Nethl, D.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Stern, N.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Sternschulte, H.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Stewart, L.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Sun, F.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Sweeney, T. M.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
[Crossref]

Takashima, H.

Takeuchi, S.

Tamarat, P.

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Tanaka, A.

Tashima, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Taylor, J.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Thiele, T.

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

Thorel, A.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

Tisler, J.

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Tissler, J.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Tobias, H.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Togan, E.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Tong, L.

Toubaru, K.

Trifonov, A.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

Twamley, J.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Twitchen, D.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Verheijen, M. A.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Vetsch, E.

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

Wadsworth, W. J.

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Walsworth, R.

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Walsworth, R. L.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Wang, G.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Wang, H.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
[Crossref]

Wang, J.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Weber, M.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Wegscheider, W.

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Wiedemann, U.

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Wilson, H.

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Withford, M.

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Wojcik, A.

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Wolters, J.

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

Wong, C. W.

Wrachtrup, J.

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review,” Phys. Stat. Solidi (A) 203, 3207–3225 (2006).
[Crossref]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

Yacoby, A.

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Yao, N.

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

Zhao, H.

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

Zhao, H.-Q.

Zhu, W.

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

Zibrov, A.

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

Zscherpel, E.

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

Zvyagin, A.

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

Zwiller, V.

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

ACS Nano (2)

J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P. A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and spin properties of defects in single digit nanodiamonds,” ACS Nano 3, 1959–1965 (2009).
[Crossref] [PubMed]

F. A. Inam, M. D. Grogan, M. Rollings, T. Gaebel, J. M. Say, C. Bradac, T. A. Birks, W. J. Wadsworth, S. Castelletto, J. R. Rabeau, and M. J. Steel, “Emission and nonradiative decay of nanodiamond nv centers in a low refractive index environment,” ACS Nano 7, 3833–3843 (2013).
[Crossref] [PubMed]

Appl. Phys. B (1)

R. Garcia-Fernandez, W. Alt, F. Bruse, C. Dan, K. Karapetyan, O. Rehband, A. Stiebeiner, U. Wiedemann, D. Meschede, and A. Rauschenbeutel, “Optical nanofibers and spectroscopy,” Appl. Phys. B 105, 3–15 (2011).
[Crossref]

Appl. Phys. Lett. (6)

E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett. 98, 243107 (2011).
[Crossref]

C. Degen, “Scanning magnetic field microscope with a diamond single-spin sensor,” Appl. Phys. Lett. 92, 243111 (2008).
[Crossref]

J. Wolters, A. W. Schell, G. Kewes, N. Nusse, M. Schoengen, H. Doscher, T. Hannappel, B. Lochel, M. Barth, and O. Benson, “Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity,” Appl. Phys. Lett. 97, 141108 (2010).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

X. Liu, J. Cui, F. Sun, X. Song, F. Feng, J. Wang, W. Zhu, L. Lou, and G. Wang, “Fiber-integrated diamond-based magnetometer,” Appl. Phys. Lett. 103, 143105 (2013).
[Crossref]

M. Davanço, M. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99, 121101 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

E. Vetsch, S. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Quantum Electron. 18, 1763 (2012).

J. Chem. Phys. (1)

H. Chew, “Transition rates of atoms near spherical surfaces,” J. Chem. Phys. 87, 1355–1360 (1987).

Jpn. J. Appl. Phys. (1)

T. Aoki, “Fabrication of ultralow-loss tapered optical fibers and microtoroidal resonators,” Jpn. J. Appl. Phys. 49, 8001 (2010).
[Crossref]

Nano Lett. (3)

I. Aharonovich, S. Castelletto, D. A. Simpson, J. C. McCallum, A. D. Greentree, and S. Prawer, “Two-level ultrabright single photon emission from diamond nanocrystals,” Nano Lett. 9, 3191–3195 (2009).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11, 4362–4365 (2011).
[Crossref] [PubMed]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Lett. 11, 198–202 (2011).
[Crossref]

Nat. Commun. (1)

M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. Bakkers, L. P. Kouwenhoven, and V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012).
[Crossref] [PubMed]

Nat. Nanotech. (2)

C. Bradac, T. Gaebel, N. Naidoo, M. Sellars, J. Twamley, L. Brown, A. Barnard, T. Plakhotnik, A. Zvyagin, and J. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nat. Nanotech. 5, 345–349 (2010).
[Crossref]

V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, “The properties and applications of nanodiamonds,” Nat. Nanotech. 7, 11–23 (2011).
[Crossref]

Nat. Phys. (1)

J. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. Hemmer, A. Yacoby, R. Walsworth, and M. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat. Phys. 4, 810–816 (2008).
[Crossref]

Nature (5)

G. Kucsko, P. Maurer, N. Yao, M. Kubo, H. Noh, P. Lo, H. Park, and M. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref] [PubMed]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonredic constituents,” Nature 480, 193–199 (2011).
[Crossref] [PubMed]

E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. Sørensen, P. Hemmer, A. Zibrov, and M. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010).
[Crossref] [PubMed]

J. Maze, P. Stanwix, J. Hodges, S. Hong, J. Taylor, P. Cappellaro, L. Jiang, M. G. Dutt, E. Togan, A. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
[Crossref] [PubMed]

G. Balasubramanian, I. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, H. Tobias, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature 455, 648–651 (2008).
[Crossref] [PubMed]

Nature Commun. (1)

M. Naqshbandi, J. Canning, B. C. Gibson, M. M. Nash, and M. J. Crossley, “Room temperature self-assembly of mixed nanoparticles into photonic structures,” Nature Commun. 3, 1188 (2012).
[Crossref]

Nature Mat. (1)

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Mat. 8, 383–387 (2009).
[Crossref]

Nature Phys. (2)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nature Phys. 4, 415–419 (2008).
[Crossref]

A. Schliesser, O. Arcizet, R. Riviere, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nature Phys. 5, 509–514 (2009).
[Crossref]

New J. Phys. (2)

A. Mohtashami and A. F. Koenderink, “Suitability of nanodiamond nitrogen–vacancy centers for spontaneous emission control experiments,” New J. Phys. 15, 043017 (2013).
[Crossref]

F. Inam, T. Gaebel, C. Bradac, L. Stewart, M. Withford, J. Dawes, J. Rabeau, and M. Steel, “Modification of spontaneous emission from nanodiamond colour centres on a structured surface,” New J. Phys. 13, 073012 (2011).
[Crossref]

Opt. Commun. (2)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
[Crossref]

Opt. Express (14)

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of pbs quantum dots,” Opt. Express 19, 1786–1793 (2011).
[Crossref] [PubMed]

M. Fujiwara, T. Noda, A. Tanaka, K. Toubaru, H.-Q. Zhao, and S. Takeuchi, “Coupling of ultrathin tapered fibers with high-q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling,” Opt. Express 20, 19545–19553 (2012).
[Crossref] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express 18, 15169–15173 (2010).
[Crossref] [PubMed]

H.-Q. Zhao, M. Fujiwara, M. Okano, and S. Takeuchi, “Observation of 1.2-ghz linewidth of zero-phonon-line in photoluminescence spectra of nitrogen vacancy centers in nanodiamonds using a fabry-perot interferometer,” Opt. Express 21, 29679–29686 (2013).
[Crossref]

I. Friedler, C. Sauvan, J.-P. Hugonin, P. Lalanne, J. Claudon, and J. Gèrard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596–8601 (2011).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

M. Davanço and K. Srinivasan, “Efficient spectroscopy of single embedded emitters using optical fiber taper waveguides,” Opt. Express 17, 10542–10563 (2009).
[Crossref] [PubMed]

M. Davanço and K. Srinivasan, “Hybrid gap modes induced by fiber taper waveguides: Application in spectroscopy of single solid-state emitters deposited on thin films,” Opt. Express 18, 10995–11007 (2010).
[Crossref] [PubMed]

M. R. Henderson, S. Afshar V, A. D. Greentree, and T. M. Monro, “Dipole emitters in fiber: interface effects, collection efficiency and optimization,” Opt. Express 19, 16182–16194 (2011).
[Crossref] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled optical cavity-qed system,” Opt. Express 17, 8081–8097 (2009).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

K. Nayak, P. Melentiev, M. Morinaga, F. L. Kien, V. Balykin, and K. Hakuta, “Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence,” Opt. Express 15, 5431–5438 (2007).
[Crossref] [PubMed]

M. Das, A. Shirasaki, K. Nayak, M. Morinaga, F. Le Kien, and K. Hakuta, “Measurement of fluorescence emission spectrum of few strongly driven atoms using an optical nanofiber,” Opt. Express 18, 17154–17164 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rep. (1)

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 1–45 (2013).
[Crossref]

Phys. Rev. A (4)

K. Nayak, F. Le Kien, M. Morinaga, and K. Hakuta, “Antibunching and bunching of photons in resonance fluorescence from a few atoms into guided modes of an optical nanofiber,” Phys. Rev. A 79, 021801 (2009).
[Crossref]

F. Le Kien, V. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A 70, 063403 (2004).
[Crossref]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410 (1988).
[Crossref] [PubMed]

Phys. Rev. B (2)

T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, and R. G. Beausoleil, “Polarization-selective excitation of nitrogen vacancy centers in diamond,” Phys. Rev. B 76, 165205 (2007).
[Crossref]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 33201 (2008).
[Crossref]

Phys. Rev. Lett (1)

A. Batalov, V. Jacques, F. Kaiser, P. Siyushev, P. Neumann, L. Rogers, R. McMurtrie, N. Manson, F. Jelezko, and J. Wrachtrup, “Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond,” Phys. Rev. Lett 102, 195506 (2009).
[Crossref] [PubMed]

Phys. Rev. Lett. (9)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

P. Tamarat, T. Gaebel, J. Rabeau, M. Khan, A. Greentree, H. Wilson, L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark shift control of single optical centers in diamond,” Phys. Rev. Lett. 97, 083002 (2006).
[Crossref] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290–293 (2000).
[Crossref] [PubMed]

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
[Crossref] [PubMed]

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett. 89, 187901 (2002).
[Crossref] [PubMed]

A. Goban, K. Choi, D. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. Stern, and H. Kimble, “Demonstration of a state-insensitive, compensated nanofiber trap,” Phys. Rev. Lett. 109, 033603 (2012).
[Crossref] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
[Crossref] [PubMed]

H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002).
[Crossref] [PubMed]

Phys. Stat. Solidi (A) (1)

F. Jelezko and J. Wrachtrup, “Single defect centres in diamond: a review,” Phys. Stat. Solidi (A) 203, 3207–3225 (2006).
[Crossref]

Other (2)

The exact distance in vacuum that corresponds to those in nanodiamond should be written in d/ndiamond. These values can be easily interpolated from the calculated results in Fig. 7(c).

J. J. David, Classical electrodynamics (Wiley Eastern Limited, 1975).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the structure and geometry of the simulated model.

Fig. 2
Fig. 2

Two-dimensional cross section of the electric field of the fundamental guided mode of the tapered fiber with a diameter of 300 nm and a wavelength of 637 nm. (a) Intensity and (b) each electric field component (specifically their E2 values). The color bar shows a logarithmic scale. White circles indicate the surface of the tapered fiber.

Fig. 3
Fig. 3

Cross sections (X = 0 for the azimuthal dipole orientation, and Y = 0 for all other dipole configurations) of the electric field intensity of the dipolar emission and schematics of the geometries for the five cases: (a) radial and (b) axial dipoles at the center and (c) radial, (d) azimuthal, and (e) axial dipoles at the surface. The square of the electric field intensity is mapped. The color bar shows a logarithmic scale. Note that we show X=0 cross-section for the azimuthal dipole orientation because the azimuthal orientation has an asymmetric plane in X = 0. The electric field pattern of the guided mode shown in Fig. 2 should be rotated by 90° in this case.

Fig. 4
Fig. 4

Plots of the coupling efficiency as a function of the taper diameter for the four dipolar geometries. The inset is a comparison of our simulation (squares) for average dipolar orientations (the average of the three orientations) with the previously reported result in Ref. [25] (dotted line), which is taken from the literature. The fiber size parameter is defined as πd/λ. We used the same parameters used in [25] (specifically, λ and d) and calculated the coupling efficiency for average dipolar orientations.

Fig. 5
Fig. 5

Plots of the spontaneous emission rate of NV centers as a function of nanodiamond size. We considered three nanodiamond shapes: (a) spherical, (b) cubical, and (c) pyramidal. The red line in (a) is the analytical solution. The dashed lines connecting the dots in (b) and (c) are drawn to guide the eye. The insets are the close-up of the region L ≤ 200 nm. The spontaneous emission rate is normalized to that in bulk diamond. The length of the nanodiamond strucutre and the position of the dipole are shown on the left side of each plot.

Fig. 6
Fig. 6

Dependence of the coupling efficiency on nanocrystal size. (a) Schematic of the geometries. (b) Plots of the coupling efficiency and the emission rate as a function of the nanocrystal size Φ. The dotted line indicates the emission rate of the NV center without tapered fibers, which is exactly the same as Fig. 5(a). (c) Plot of the guided power (Pcouple) as a function of the nanocrystal size. Pcouple is normalized to the spontaneous emission rate of the dipole in bulk diamond. The dipole has radial orientation.

Fig. 7
Fig. 7

Dependence of the coupling efficiency on the three orientations. (a) Schematic of the geometries. (b) Plots of the coupling efficiencies as a function of the nanocrystal size Φ for radial, azimuthal, and axial orientations. (c) Plots of the coupling efficiencies as a function of the dipole–taper surface distance Φ/2, where the dipole is in vacuum.

Fig. 8
Fig. 8

Dependence of the coupling efficiency on the NV dipole position in the nanocrystals. (a) Schematic of the geometries. (b) Plots of the coupling efficiency and the spontaneous emission rate as a function of the dipole position in 370-nm-sized nanocrystal, δ. (c) Plot of the guided power (Pcouple) as a function of the dipole position. The dipole has radial orientation.

Tables (1)

Tables Icon

Table 1 Coupling efficiencies and other parameters for five dipolar geometries. Γ and Pcouple are normalized to the emitted power of the dipole in homogeneous silica media. The overlap integral W is the value at Z = 22.6 μm. Note that Pcouple and η are of both fiber ends.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = P couple Γ .
W = Re [ ( E 1 × H 2 * d S ) ( E 2 × H 1 * d S ) ] Re [ ( E 1 × H 1 * d S ) ( E 2 × H 2 * d S ) ] ,

Metrics