Abstract

We demonstrate silicon-based traveling-wave photodetector arrays (Si-TWPDAs) with parallel optical feeding by integrating multiple Germanium photodetectors. Such Si-TWPDAs feature the merit of high optical saturation power with remaining the large operation bandwidth. The impedance-matched traveling-wave electrode design takes into account the individual Ge photodetector loading effect. Optical waveguide delay lines are designed in order to balance the electrical phase delay of the traveling-wave electrode. The maximum linear photocurrent at −4V biased voltage are respectively 16 mA, 38 mA, and 65 mA with integrating 1, 2, and 4 photodetectors, upon the saturation power of 40 mW, 100 mW, and 160 mW. This corresponds to a normalized photocurrent generation of >0.32 mA/µm3 and a normalized saturation power of 0.8 mW/µm3. The extracted fiber access responsivity is ~0.42 A/W and the intrinsic responsivity of ~0.82 A/W. The measured 3-dB bandwidth for 4-channel TWPDA is ~20 GHz.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power dual-fed traveling wave photodetector circuits in silicon photonics

Chia-Ming Chang, Jeffrey H. Sinsky, Po Dong, Guilhem de Valicourt, and Young-Kai Chen
Opt. Express 23(17) 22857-22866 (2015)

Si/Ge uni-traveling carrier photodetector

Molly Piels and John E. Bowers
Opt. Express 20(7) 7488-7495 (2012)

High speed and high power polarization insensitive germanium photodetector with lumped structure

Guanyu Chen, Yu Yu, Xi Xiao, and Xinliang Zhang
Opt. Express 24(9) 10030-10039 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  2. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  4. C. H. Cox, Analog Optical Links: Theory and Practice (U.K. Cambridge Univ. Press, 2004).
  5. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
    [Crossref]
  6. V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
    [Crossref]
  7. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
    [Crossref]
  8. S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
    [Crossref]
  9. M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
    [Crossref]
  10. A. Beling, J. C. Campbell, H.-G. Bach, G. G. Mekonnen, and D. Schmidt, “Parallel-eed traveling wave photodetector for >100-GHz applications,” J. Lightwave Technol. 26(1), 16–20 (2008).
    [Crossref]
  11. A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
    [Crossref]
  12. Z. Xiao, X. Luo, P. H. Lim, P. Prabhathan, S. T. H. Silalahi, T.-Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express 21(14), 16331–16336 (2013).
    [Crossref] [PubMed]
  13. T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
    [Crossref]
  14. T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
    [Crossref]
  15. L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
    [Crossref]
  16. A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
    [Crossref]

2014 (1)

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

2013 (2)

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Z. Xiao, X. Luo, P. H. Lim, P. Prabhathan, S. T. H. Silalahi, T.-Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express 21(14), 16331–16336 (2013).
[Crossref] [PubMed]

2010 (3)

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

2001 (1)

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

2000 (1)

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

1997 (2)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

1995 (1)

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Ang, K. W.

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Bach, H.-G.

Beling, A.

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Bowers, J. E.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[Crossref]

Brennan, T. M.

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

Campbell, J. C.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chau, T.

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

Chen, K. K.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

Cho, A. Y.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Duan, N.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Fang, Q.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[Crossref]

Hammons, B. E.

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

Hietala, V. M.

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

Itoh, T.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Jung, T.

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Kwong, D. L.

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Li, C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

Lim, A. E.-J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Lim, P. H.

Lin, L. Y.

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Liow, T. Y.

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Liow, T.-Y.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Z. Xiao, X. Luo, P. H. Lim, P. Prabhathan, S. T. H. Silalahi, T.-Y. Liow, J. Zhang, and F. Luan, “Ultra-compact low loss polarization insensitive silicon waveguide splitter,” Opt. Express 21(14), 16331–16336 (2013).
[Crossref] [PubMed]

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Lo, G. Q.

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Lo, G.-Q.

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Luan, F.

Luo, X.

Mekonnen, G. G.

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Muller, R. E.

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Murthy, S.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

Nunoya, N.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Piels, M.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Prabhathan, P.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

Ramaswamy, A.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[Crossref]

Saif Islam, M.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

Schmidt, D.

Silalahi, S. T. H.

Sivco, D. L.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Song, J.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Tern, R. P.-C.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

Tu, X.

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

Vang, T. A.

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Vawter, G. A.

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

Waterhouse, R. B.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

Wu, M. C.

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

Xiao, Z.

Xiong, Y.

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Yin, T.

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

Yu, M.

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

Zhang, J.

IEEE J. Sel. Top. Quantum Electron. (3)

T. Y. Liow, K. W. Ang, Q. Fang, J. Song, Y. Xiong, M. Yu, G. Q. Lo, and D. L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron. 16(1), 307–315 (2010).
[Crossref]

T.-Y. Liow, J. Song, X. Tu, A. E.-J. Lim, Q. Fang, N. Duan, M. Yu, and G.-Q. Lo, “Silicon optical interconnect device technologies for 40 Gb/s and beyond,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200312 (2013).
[Crossref]

A. E.-J. Lim, J. Song, Q. Fang, C. Li, X. Tu, N. Duan, K. K. Chen, R. P.-C. Tern, and T.-Y. Liow, “Review of silicon photonics foundry efforts,” IEEE J. Sel. Top. Quantum Electron. 20(4), 8300112 (2014).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Murthy, T. Jung, T. Chau, M. C. Wu, D. L. Sivco, and A. Y. Cho, “A novel monolithic distributed traveling-wave photodetector with parallel optical feed,” IEEE Photon. Technol. Lett. 12(6), 681–683 (2000).
[Crossref]

IEEE Trans. Microw. Theory Tech. (6)

M. Saif Islam, S. Murthy, T. Itoh, M. C. Wu, D. Novak, R. B. Waterhouse, D. L. Sivco, and A. Y. Cho, “Velocity-matched distributed photodetectors and balanced photodetectors with p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 49(10), 1914–1920 (2001).
[Crossref]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech. 54(2), 906–920 (2006).
[Crossref]

V. M. Hietala, G. A. Vawter, T. M. Brennan, and B. E. Hammons, “Travelling-wave photodetectors for high-power, large-bandwidth applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2291–2298 (1995).
[Crossref]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[Crossref]

L. Y. Lin, M. C. Wu, T. Itoh, T. A. Vang, R. E. Muller, D. L. Sivco, and A. Y. Cho, “High-power high-speed photodetectors-design, analysis, and experimental demonstration,” IEEE Trans. Microw. Theory Tech. 45(8), 1320–1331 (1997).
[Crossref]

A. Ramaswamy, M. Piels, N. Nunoya, T. Yin, and J. E. Bowers, “High power silicon-germanium photodiodes for microwave photonic applications,” IEEE Trans. Microw. Theory Tech. 58(11), 3336–3343 (2010).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (2)

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Other (1)

C. H. Cox, Analog Optical Links: Theory and Practice (U.K. Cambridge Univ. Press, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The block diagram of an N-channel parallel-fed traveling-wave photodetector array, which includes power splitter, optical delay lines, Ge PD array and traveling-wave electrode.
Fig. 2
Fig. 2 (a) Design layout of a 4-channel TWPDA, including the 2-stage MMI-splitter for light splitting, the optical waveguide delay lines, and the Ge photodetector array integrating with the impedance-matched traveling-wave electrode with dual-meal layer. (b)-(c) The zoom-in cross-sectional views of the dual-metal layers design, corresponding to the positions B and C in (a).
Fig. 3
Fig. 3 (a) Optical microscope image of the fabricated 4-TWPDA. The SEM of (b) the optical delay lines, (c) the Ge photodetector array right after the Ge growth, and (d) the low-loss MMI splitter. (e) and (f) are the cross-SEMs (XSEMs) of the traveling-wave electrode with dual-metal layers.
Fig. 4
Fig. 4 Characterization of the phase velocity of the traveling-wave electrode. (a) Design layout of a 16 order traveling-wave photodetector array with individual optical input. (b) The measured electrical delay as function of the PD order for three randomly chosen devices with identical design in a wafer.
Fig. 5
Fig. 5 Characterization of the operation bandwidth of the traveling-wave photodetector array. (a) S21 for 1-, 2-, and 4-TWPDAs at −2V bias voltage. (b) S21 for 4-TWPDA at 0V, −1V, −2V, and −4V baised voltages. The 3-dB bandwidth is summarized in the tables inserted.
Fig. 6
Fig. 6 Photocurrents characterization upon different optical input powers. The measured photocurrent of 1-, 2-, 4-TWPDA at (a) −1V and (b) −4V bias voltages. The maximum photocurrents before devices failure are respectively 16mA, 38mA, and 65 mA for 1-, 2-, and 4-TWPDAs.
Fig. 7
Fig. 7 (a) Photocurrent characterization of a 4-TWPDA upon different bias voltages with different optical input powers. (b) The extracted maximum photocurrent and the corresponding optical saturation powers.

Metrics