Abstract

Abstract: A wavelength-swept thulium-doped silica fiber laser using an intracavity rotating slotted-disk wavelength scanning filter in combination with an intracavity solid etalon for passive control of temporal and spectral profiles is reported. The laser yielded a wavelength swept output in a step-wise fashion with each laser pulse separated from the previous pulse by a frequency interval equal to the free-spectral-range of the etalon and with an instantaneous linewidth of <0.05 nm. Scanning ranges from 1905 nm to 2049 nm for a cladding-pumping laser configuration, and from 1768 nm to 1956 nm for a core-pumping laser configuration were achieved at average output powers up to ~1 W.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson
Opt. Express 23(1) 471-476 (2015)

High-speed OCT light sources and systems [Invited]

Thomas Klein and Robert Huber
Biomed. Opt. Express 8(2) 828-859 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref] [PubMed]
  2. H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
    [Crossref]
  3. V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
    [Crossref]
  4. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, “High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm,” Opt. Lett. 32(4), 361–363 (2007).
    [Crossref] [PubMed]
  5. F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
    [Crossref]
  6. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  7. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
    [Crossref]
  8. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010).
    [Crossref] [PubMed]
  9. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
    [Crossref] [PubMed]
  10. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6 mum,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  11. T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
    [Crossref] [PubMed]
  12. M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
    [Crossref]
  13. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  14. R. Scheps and J. F. Myers, “Performance of a diode-pumped laser repetitively Q-switched with a mechanical shutter,” Appl. Opt. 33(6), 969–978 (1994).
    [Crossref] [PubMed]
  15. S. Moon and D. Y. Kim, “Normalization detection scheme for high-speed optical frequency-domain imaging and reflectometry,” Opt. Express 15(23), 15129–15146 (2007).
    [Crossref] [PubMed]

2013 (1)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

T. H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17(23), 21257–21270 (2009).
[Crossref] [PubMed]

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

2008 (1)

V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[Crossref]

2007 (3)

2006 (2)

2003 (1)

1997 (2)

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref] [PubMed]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

1994 (1)

Adler, D. C.

Andersen, P. E.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Bjarklev, A.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Boudoux, C.

Bouma, B. E.

Cable, A. E.

Chinn, S. R.

Clarkson, W. A.

Culverhouse, D. O.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Eom, J.-S.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Faber, D. J.

V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[Crossref]

Fujimoto, J. G.

Geng, J.

Gorczynska, I.

Hsu, K.

J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
[Crossref] [PubMed]

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Huber, R.

Jeon, M.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Jiang, J. Y.

Jiang, S.

Jung, U.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Kim, B. Y.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Kim, C.-S.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Kim, D. Y.

Kim, J.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Kodach, V. M.

V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[Crossref]

Lange, R.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Liang, H.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Moon, S.

Myers, J. F.

Nielsen, F. D.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Oh, J.-H.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Oh, W. Y.

Park, Y.-H.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Peric, B.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Reisen, P.

Richardson, D. J.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Sahu, J. K.

Scheps, R.

Shen, D. Y.

Shishkov, M.

Song, J.

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Spring, M.

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

Srinivasan, V. J.

Swanson, E. A.

Tearney, G. J.

Thrane, L.

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Tsai, T. H.

Vakoc, B. J.

van Leeuwen, T. G.

V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[Crossref]

Wang, J.

Wang, Q.

Wojtkowski, M.

Yun, S. H.

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Zhou, C.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Liang, R. Lange, B. Peric, and M. Spring, “Optimum spectral window for imaging of art with optical coherence tomography,” Appl. Phys. B 111(4), 589–602 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, “Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter,” IEEE J. Sel. Top. Quantum Electron. 3(4), 1087–1096 (1997).
[Crossref]

Journal of the Optical Society of Korea (1)

M. Jeon, U. Jung, J. Song, J. Kim, J.-H. Oh, J.-S. Eom, C.-S. Kim, and Y.-H. Park, “Frequency swept laser at 1300 nm using a wavelength scanning filter based on a rotating slit disk,” Journal of the Optical Society of Korea 13(3), 330–334 (2009).
[Crossref]

Opt. Commun. (2)

V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun. 281(19), 4975–4978 (2008).
[Crossref]

F. D. Nielsen, L. Thrane, K. Hsu, A. Bjarklev, and P. E. Andersen, “Semiconductor optical amplifier based swept wavelength source at 1060 nm using a scanning Fabry–Perot filter and an YDFA-based booster amplifier,” Opt. Commun. 271(1), 197–202 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of the cladding-pumped Tm-doped fiber WS-laser based on a rotating slotted-disk. The inset at the left side shows the front view of the rotating slotted-disk. (b) Schematic diagram of the core-pumped WS-laser. The angled fiber end (APC) was connected to a similar external cavity unit as used in the cladding-pumped configuration. The cross marks are splicing points. LD is laser diode.
Fig. 2
Fig. 2 Output spectral and temporal profiles of the WS-laser for the cladding-pumped configuration without an etalon. (a) Whole spectrum and (b) temporal profiles for a sweep. (c) Local spectral and (d) temporal profiles.
Fig. 3
Fig. 3 Output spectral and temporal profiles of the WS-laser for the cladding-pumped configuration with the etalon. (a) Whole spectrum and (b) temporal profiles for a sweep. (c) Local spectral and (d) temporal profiles.
Fig. 4
Fig. 4 (a) Output spectral and (b) temporal profiles of the WS-laser for the core-pumped configuration with the etalon.
Fig. 5
Fig. 5 (a) Output spectral and (b) temporal profiles of the WS-laser for the cladding-pumped configuration with the etalon at 400 Hz scanning frequency.
Fig. 6
Fig. 6 Variation of the peak intensities at each wavelength for successive sweeps and resulting standard deviations. Data for 9 sweeps are shown.

Metrics